OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1957–1968

Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function

David A. Boas and Anders M. Dale  »View Author Affiliations


Applied Optics, Vol. 44, Issue 10, pp. 1957-1968 (2005)
http://dx.doi.org/10.1364/AO.44.001957


View Full Text Article

Acrobat PDF (1267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse optical imaging can measure brain activity noninvasively in humans through the scalp and skull by measuring the light intensity modulation arising from localized-activity-induced absorption changes within the cortex. Spatial resolution and localization accuracy are currently limited by measurement geometry to approximately 3 cm in the plane parallel to the scalp. Depth resolution is a more significant challenge owing to the limited angle tomography permitted by reflectance-only measurements. We combine previously established concepts for improving image quality and demonstrate, through simulation studies, their application for improving the image quality of adult human brain function. We show in a three-dimensional human head model that localization accuracy is significantly improved by the addition of measurements that provide overlapping samples of brain tissue. However, the reconstructed absorption contrast is significantly underestimated because its depth is underestimated. We show that the absorption contrast amplitude accuracy can be significantly improved by providing a cortical spatial constraint in the image reconstruction to obtain a better depth localization. The cortical constraint makes physiological sense since the brain-activity-induced absorption changes are occurring in the cortex and not in the scalp, skull, and cerebral spinal fluid. This spatial constraint is provided by segmentation of coregistered structural magnetic resonance imaging (MRI). However, the absorption contrast deep within the cortex is reconstructed superficially, resulting in an underestimation of the absorption contrast. The synthesis of techniques described here indicates that multimodality imaging of brain function with diffuse optical imaging and MRI has the potential to provide more quantitative estimates of the total and deoxyhemoglobin response to brain activation, which is currently not provided by either method independently. However, issues of depth resolution within the cortex remain to be resolved.

© 2005 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography

Citation
David A. Boas and Anders M. Dale, "Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-10-1957

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited