OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1957–1968

Simulation study of magnetic resonance imaging–guided cortically constrained diffuse optical tomography of human brain function

David A. Boas and Anders M. Dale  »View Author Affiliations

Applied Optics, Vol. 44, Issue 10, pp. 1957-1968 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1267 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical imaging can measure brain activity noninvasively in humans through the scalp and skull by measuring the light intensity modulation arising from localized-activity-induced absorption changes within the cortex. Spatial resolution and localization accuracy are currently limited by measurement geometry to approximately 3 cm in the plane parallel to the scalp. Depth resolution is a more significant challenge owing to the limited angle tomography permitted by reflectance-only measurements. We combine previously established concepts for improving image quality and demonstrate, through simulation studies, their application for improving the image quality of adult human brain function. We show in a three-dimensional human head model that localization accuracy is significantly improved by the addition of measurements that provide overlapping samples of brain tissue. However, the reconstructed absorption contrast is significantly underestimated because its depth is underestimated. We show that the absorption contrast amplitude accuracy can be significantly improved by providing a cortical spatial constraint in the image reconstruction to obtain a better depth localization. The cortical constraint makes physiological sense since the brain-activity-induced absorption changes are occurring in the cortex and not in the scalp, skull, and cerebral spinal fluid. This spatial constraint is provided by segmentation of coregistered structural magnetic resonance imaging (MRI). However, the absorption contrast deep within the cortex is reconstructed superficially, resulting in an underestimation of the absorption contrast. The synthesis of techniques described here indicates that multimodality imaging of brain function with diffuse optical imaging and MRI has the potential to provide more quantitative estimates of the total and deoxyhemoglobin response to brain activation, which is currently not provided by either method independently. However, issues of depth resolution within the cortex remain to be resolved.

© 2005 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.5280) Medical optics and biotechnology : Photon migration
(170.6960) Medical optics and biotechnology : Tomography

Original Manuscript: July 21, 2004
Revised Manuscript: November 16, 2004
Manuscript Accepted: November 16, 2004
Published: April 1, 2005

David A. Boas and Anders M. Dale, "Simulation study of magnetic resonance imaging–guided cortically constrained diffuse optical tomography of human brain function," Appl. Opt. 44, 1957-1968 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. A. Baird, J. Kagan, T. Gaudette, K. A. Walz, N. Hershlag, D. A. Boas, “Frontal lobe activation during object permanence: data from near-infrared spectroscopy,” Neuroimage. 16, 1120–1125 (2002). [CrossRef] [PubMed]
  2. H. Kato, M. Izumiyama, H. Koizumi, A. Takahashi, Y. Itoyama, “Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: a comparison with functional MRI,” Stroke 33, 2032–2036 (2002). [CrossRef] [PubMed]
  3. I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol. 52, 188–194 (2002). [CrossRef] [PubMed]
  4. G. Gratton, M. Fabiani, T. Elbert, B. Rockstroh, “Seeing right through you: applications of optical imaging to the study of the human brain,” Psychophysiology 40, 487–491 (2003). [CrossRef] [PubMed]
  5. A. F. Cannestra, I. Wartenburger, H. Obrig, A. Villringer, A. W. Toga, “Functional assessment of Broca’s area using near infrared spectroscopy in humans,” NeuroReport14, 1961–1965 (2003). [CrossRef] [PubMed]
  6. M. Moosmann, P. Ritter, I. Krastel, A. Brink, S. Thees, F. Blankenburg, B. Taskin, H. Obrig, A. Villringer, “Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy,” Neuroimage. 20, 145–158 (2003). [CrossRef] [PubMed]
  7. M. Wolf, U. Wolf, J. H. Choi, V. Toronov, L. A. Paunescu, A. Michalos, E. Gratton, “Fast cerebral functional signal in the 100-ms range detected in the visual cortex by frequency-domain near-infrared spectrophotometry,” Psychophysiology 40, 521–528 (2003). [CrossRef] [PubMed]
  8. G. Taga, K. Asakawa, A. Maki, Y. Konishi, H. Koizumi, “Brain imaging in awake infants by near-infrared optical topography,” Proc. Natl. Acad. Sci. USA 100, 10722–10727 (2003).
  9. M. Pena, A. Maki, D. Kovacic, G. Dehaene-Lambertz, H. Koizumi, F. Bouquet, J. Mehler, “Sounds and silence: an optical topography study of language recognition at birth,” Proc. Natl. Acad. Sci. USA 100, 11702–11705 (2003).
  10. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci. Lett. 154, 101–104 (1993). [CrossRef] [PubMed]
  11. Y. Hoshi, M. Tamura, “Detection of dynamic changes in cerebral oxygenation coupled to neuronal function during mental work in man,” Neurosci. Lett. 150, 5–8 (1993). [CrossRef] [PubMed]
  12. J. H. Meek, M. Firbank, C. E. Elwell, J. Atkinson, O. Braddick, J. S. Wyatt, “Regional hemodynamic responses to visual stimulation in awake infants,” Pediatr. Res. 43, 840–843 (1998). [CrossRef] [PubMed]
  13. K. Sakatani, S. Chen, W. Lichty, H. Zuo, Y. P. Wang, “Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy,” Early Hum. Dev. 55, 229–236 (1999). [CrossRef] [PubMed]
  14. S. R. Hintz, D. A. Benaron, A. M. Siegel, A. Zourabian, D. K. Stevenson, D. A. Boas, “Bedside functional imaging of the premature infant brain during passive motor activation,” J. Perinat. Med. 29, 335–343 (2001). [CrossRef] [PubMed]
  15. G. Gratton, A. J. Sarno, E. Maclin, P. M. Corballis, M. Fabiani, “Toward non-invasive 3-D imaging of the time course of cortical activity: investigation of the depth of the event-related optical signal (EROS),” Neuroimage. 11, 491–504 (2000). [CrossRef] [PubMed]
  16. H. Koizumi, T. Yamamoto, A. Maki, Y. Yamashita, H. Sato, H. Kawaguchi, N. Ichikawa, “Optical topography: practical problems and new applications,” Appl. Opt. 42, 3054–3062 (2003). [CrossRef] [PubMed]
  17. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near infrared optical imaging,” Psychophysiology 40, 548–560 (2003).
  18. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H.-M. Cheng, T. J. Brady, B. R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Natl. Acad. Sci. USA 89, 5675–5679 (1992).
  19. S. Ogawa, D. Tank, R. Menon, J. Ellermann, S.-G. Kim, H. Merkel, K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging,” Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).
  20. A. Villringer, B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20, 435–442 (1997). [CrossRef] [PubMed]
  21. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys. 22, 1997–2005 (1995). [CrossRef] [PubMed]
  22. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, S. Fanini, “On-line optical imaging of the human brain with 160-ms temporal resolution,” Opt. Express6, 49–57 (2000), http://www.opticsexpress.org . [CrossRef]
  23. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, D. T. Delpy, “A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy,” Phys. Med. Biol. 38, 1859–1876 (1993). [CrossRef] [PubMed]
  24. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, H. Rinneberg, “Determining changes in NIR absorption using a layered model of the human head,” Phys. Med. Biol. 46, 879–896 (2001). [CrossRef] [PubMed]
  25. G. Strangman, M. A. Franceschini, D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage. 18, 865–879 (2003). [CrossRef] [PubMed]
  26. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  27. A. M. Siegel, J. J. A. Marota, D. A. Boas, “Design and evaluation of a continuous-wave diffuse optical tomography system,” Opt. Express4, 287–298 (1999), http://www.opticsexpress.org . [CrossRef]
  28. A. M. Siegel, J. P. Culver, J. B. Mandeville, D. A. Boas, “Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation,” Phys. Med. Biol. 48, 1391–1403 (2003). [CrossRef] [PubMed]
  29. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23, 911–924 (2003). [CrossRef] [PubMed]
  30. J. P. Culver, A. M. Siegel, J. J. Stott, D. A. Boas, “Volumetric diffuse optical tomography of brain activity,” Opt. Lett. 28, 2061–2063 (2003). [CrossRef] [PubMed]
  31. A. Bluestone, G. Abdoulaev, C. Schmitz, R. Barbour, A. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express9, 272–286 (2001), http://www.opticsexpress.org . [CrossRef]
  32. D. A. Boas, K. Chen, D. Grebert, M. A. Franceschini, “Improving diffuse optical imaging spatial resolution of cerebral hemodynamic response to brain activation in humans,” Opt. Lett. 29, 1506–1508 (2004). [CrossRef] [PubMed]
  33. R. L. Barbour, H. L. Graber, J. Chang, S. S. Barbour, P. C. Koo, R. Aronson, “MRI-guided optical tomography: prospects and computation for a new imaging method,” IEEE Comput. Sci. Eng. 2, 63–77 (1995). [CrossRef]
  34. B. W. Pogue, K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information,” Opt. Lett. 23, 1716–1718 (1998). [CrossRef]
  35. A. H. Barnett, J. P. Culver, A. G. Sorensen, A. Dale, D. A. Boas, “Robust inference of baseline optical properties of the human head with three-dimensional segmentation from magnetic resonance imaging,” Appl. Opt. 42, 3095–3108 (2003). [CrossRef]
  36. A. M. Dale, M. I. Sereno, “Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstructions: a linear approach,” J. Cogn. Neurosci. 5, 162–176 (1993). [CrossRef] [PubMed]
  37. A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Belliveau, J. D. Lewine, E. Halgren, “Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity,” Neuron 26, 55–67 (2000). [CrossRef] [PubMed]
  38. B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich, C. Haselgrove, A. van der Kouwe, R. Killiany, D. Kennedy, S. Klaveness, A. Montillo, N. Makris, B. Rosen, A. M. Dale, “Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain,” Neuron 33, 341–355 (2002). [CrossRef] [PubMed]
  39. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001). [CrossRef] [PubMed]
  40. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997). [CrossRef] [PubMed]
  41. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38, 4939–4950 (1999). [CrossRef]
  42. D. A. Boas, J. Culver, J. Stott, A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult head,” Opt. Express10, 159–170 (2002), http://www.opticsexpress.org . [CrossRef]
  43. M. A. Franceschini, D. A. Boas, “Noninvasive measurement of neuronal activity with near-infrared optical imaging,” Neuroimage. 21, 372–386 (2004).
  44. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Institute of Electrical and Electronics Engineers, New York, 1988).
  45. T. Yamamoto, A. Maki, T. Kadoya, Y. Tanikawa, Y. Yamada, E. Okada, H. Koizumi, “Arranging optical fibres for the spatial resolution improvement of topographical images,” Phys. Med. Biol. 47, 3429–3440 (2002). [CrossRef] [PubMed]
  46. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779–791 (1998). [CrossRef]
  47. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, A. Villringer, “Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals,” J. Biomed. Opt. 7, 464–470 (2002). [CrossRef] [PubMed]
  48. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000). [CrossRef]
  49. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002). [CrossRef] [PubMed]
  50. S. R. Arridge, M. Schweiger, “Inverse methods for optical tomography” in Information Processing in Medical Imaging ’93, H. H. Barrett, A. F. Gmitro, eds. (Springer-Verlag, Berlin, 1993). [CrossRef]
  51. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999). [CrossRef]
  52. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
  53. V. Toronov, A. Webb, J. H. Choi, M. Wolf, L. Safonova, U. Wolf, E. Gratton, “Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging,” Opt. Express9, 417–427 (2001), http://www.opticsexpress.org . [CrossRef]
  54. G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage. 17, 719–731 (2002). [CrossRef] [PubMed]
  55. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003). [CrossRef] [PubMed]
  56. X. Cheng, D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express4, 299–307 (1999), http://www.opticsexpress.org . [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited