OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 10 — Apr. 1, 2005
  • pp: 1977–1983

Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium

Wenbo Sun, Norman G. Loeb, Stoyan Tanev, and Gorden Videen  »View Author Affiliations


Applied Optics, Vol. 44, Issue 10, pp. 1977-1983 (2005)
http://dx.doi.org/10.1364/AO.44.001977


View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The two-dimensional (2-D) finite-difference time-domain (FDTD) method is applied to calculate light scattering and absorption by an arbitrarily shaped infinite column embedded in an absorbing dielectric medium. A uniaxial perfectly matched layer (UPML) absorbing boundary condition is used to truncate the computational domain. The single-scattering properties of the infinite column embedded in the absorbing medium, including scattering phase functions and extinction and absorption efficiencies, are derived by use of an area integration of the internal field. An exact solution for light scattering and absorption by a circular cylinder in an absorbing medium is used to examine the accuracy of the 2-D UPML FDTD code. With use of a cell size of 1/120 incident wavelength in the FDTD calculations, the errors in the extinction and absorption efficiencies and asymmetry factors from the 2-D UPML FDTD are generally smaller than ~0.1%. The errors in the scattering phase functions are typically smaller than ~4%. With the 2-D UPML FDTD technique, light scattering and absorption by long noncircular columns embedded in absorbing media can be accurately solved.

© 2005 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(290.5890) Scattering : Scattering, stimulated

History
Original Manuscript: August 19, 2004
Revised Manuscript: October 29, 2004
Manuscript Accepted: October 3, 2004
Published: April 1, 2005

Citation
Wenbo Sun, Norman G. Loeb, Stoyan Tanev, and Gorden Videen, "Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium," Appl. Opt. 44, 1977-1983 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-10-1977


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. C. Mundy, J. A. Roux, A. M. Smith, “Mie scattering by spheres in an absorbing medium,” J. Opt. Soc. Am. 64, 1593–1597 (1974). [CrossRef]
  2. P. Chylek, “Light scattering by small particles in an absorbing medium,” J. Opt. Soc. Am. 67, 561–563 (1977). [CrossRef]
  3. C. F. Bohren, D. P. Gilra, “Extinction by a spherical particle in an absorbing medium,” J. Colloid Interface Sci. 72, 215–221 (1979). [CrossRef]
  4. M. Quinten, J. Rostalski, “Lorenz-Mie theory for spheres immersed in an absorbing host medium,” Part. Part. Syst. Charact. 13, 89–96 (1996). [CrossRef]
  5. A. N. Lebedev, M. Gartz, U. Kreibig, O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. 6, 365–373 (1999).
  6. W. Sun, “Light scattering by nonspherical particles: numerical simulation and applications,” Ph.D. dissertation (Dalhousie University, Halifax, Nova Scotia, Canada, 2000).
  7. Q. Fu, W. Sun, “Mie theory for light scattering by a spherical particle in an absorbing medium,” Appl. Opt. 40, 1354–1361 (2001). [CrossRef]
  8. I. W. Sudiarta, P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275–1278 (2001). [CrossRef]
  9. I. W. Sudiarta, P. Chylek, “Mie scattering efficiency of a large spherical particle embedded in an absorbing medium,” J. Quat. Spectrosc. Radiat. Transfer 70, 709–714 (2001). [CrossRef]
  10. Y. Ping, B. Gao, W. J. Wiscombe, M. I. Mishchenko, S. E. Platnick, H. Huang, B. A. Baum, Y. Hu, D. M. Winker, S. Tsay, S. K. Park, “Inherent and apparent scattering properties of coated or uncoated spheres embedded in an absorbing host medium,” Appl. Opt. 41, 2740–2759 (2002). [CrossRef]
  11. G. Videen, W. Sun, “Yet another look at light scattering from particles in absorbing media,” Appl. Opt. 42, 6724–6727 (2003). [CrossRef] [PubMed]
  12. W. Sun, N. G. Loeb, B. Lin, “Light scattering by an infinite circular cylinder immersed in an absorbing medium,” Appl. Opt. (to be published).
  13. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  14. A. Taflove, M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory Tech. MTT-23, 623–630 (1975). [CrossRef]
  15. P. Yang, K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  16. W. Sun, Q. Fu, Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition,” Appl. Opt. 38, 3141–3151 (1999). [CrossRef]
  17. W. Sun, N. G. Loeb, Q. Fu, “Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728–5743 (2002). [CrossRef] [PubMed]
  18. Z. S. Sacks, D. M. Kingsland, R. Lee, J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460–1463 (1995). [CrossRef]
  19. S. D. Gedney, “An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  20. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 2000).
  21. W. Sun, N. G. Loeb, G. Videen, Q. Fu, “Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm,” Appl. Opt. 43, 1957–1964 (2004). [CrossRef] [PubMed]
  22. D. E. Merewether, R. Fisher, F. W. Smith, “On implementing a numeric Huygen’s source in a finite difference program to illustrate scattering bodies,” IEEE Trans. Nucl. Sci. NS-27, 1829–1833 (1980). [CrossRef]
  23. G. Mur, “Absorbing boundary condition for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. EMC-23, 377–382 (1981). [CrossRef]
  24. A. Taflove, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, Mass., 1995)
  25. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited