OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 11 — Apr. 10, 2005
  • pp: 2041–2048

Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system

Yueli Chen, Linda Otis, Daqing Piao, and Quing Zhu  »View Author Affiliations


Applied Optics, Vol. 44, Issue 11, pp. 2041-2048 (2005)
http://dx.doi.org/10.1364/AO.44.002041


View Full Text Article

Enhanced HTML    Acrobat PDF (2458 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enamel and dentin are the primary components of human teeth. Both of them have a strong polarization effect. We designed a polarization-sensitive optical coherence tomography (PSOCT) system to study the spatially resolved scattering and polarization phenomena of teeth. The system is constructed in free space to avoid the complexity of polarization control in fiber-based PSOCT. The structural features of enamel were evaluated in five human teeth that had no visible evidence of caries. The teeth were subsequently sectioned in mesial distal orientation and coronal orientation. Then the structural aspects of dentin were evaluated. OCT images were made of the mantel dentin near the dentin–enamel junction. Five teeth with interproximal and occlusal caries were also studied. With two channel and phase-retardation images, PSOCT provided better functional contrast and more detailed structural information than conventional OCT. For a better description of the measured PSOCT data, we classify these features by two types, i.e., the local textural features and the global structural features. This study indicates that PSOCT has the potential to be a powerful tool for research of dental formation and caries diagnosis.

© 2005 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(230.5440) Optical devices : Polarization-selective devices

History
Original Manuscript: August 10, 2004
Revised Manuscript: November 11, 2004
Manuscript Accepted: November 15, 2004
Published: April 10, 2005

Citation
Yueli Chen, Linda Otis, Daqing Piao, and Quing Zhu, "Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system," Appl. Opt. 44, 2041-2048 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-11-2041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003). [CrossRef]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science, 254, 1178–1181 (1991). [CrossRef] [PubMed]
  3. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992). [CrossRef]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue using polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997). [CrossRef] [PubMed]
  5. X. J. Wang, T. E. Milner, J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20, 1337–1339 (1995). [CrossRef] [PubMed]
  6. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276, 2037–2039 (1997). [CrossRef] [PubMed]
  7. U. Morgner, W. Drexler, F. X. Krtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000). [CrossRef]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7, 457–463 (2002). [CrossRef] [PubMed]
  9. H. Ren, Z. Ding, Y. Zhao, J. Miao, J. S. Nelson, Z. Chen, “Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin,” Opt. Lett. 27, 1702–1704 (2002). [CrossRef]
  10. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, J. F. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598–3604 (2003), http://www.opticsexpress.org .
  11. M. J. Everett, K. Schoenenberger, B. W. Colston, L. B. DaSilva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998). [CrossRef]
  12. J. F. de Boer, T. E. Milner, “Review of polarization sensitive optical tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359–371 (2002). [CrossRef] [PubMed]
  13. J. F. de Boer, Z. Chen, J. S. Nelson, S. Srinivas, A. Malekafzali, “Imaging thermally damaged tissue by polarization sensitive optical coherence tomography,” Opt. Express 3, 212–218 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  14. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A. F. Fercher, “Measurement and imaging of birefringence and optical axis orientation by phase resolved polarization-sensitive optical coherence tomography,” Opt. Express 9, 780–790 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  15. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 1610–1612 (2002). [CrossRef]
  16. J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999). [CrossRef]
  17. C. Saxer, J. de Boer, B. Park, Y. Zhao, Z. Chen, J. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355–1357 (2000). [CrossRef]
  18. B. W. Colston, U. S. Sathyam, L. B. Da Silva, M. J. Everett, P. Stroeve, L. L. Otis, “Dental OCT,” Opt. Express 3, 230–238 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  19. B. W. Colston, M. J. Everett, L. B. DaSilva, L. L. Otis, P. Stroeve, H. Nathel, “Imaging hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37, 3582–3585 (1998). [CrossRef]
  20. A. Baumgartner, C. K. Hitzenberger, S. Dichtl, H. Sattmann, A. Moritz, W. Sperr, A. F. Fercher, “Optical coherence tomography of dental structures,” in Lasers in Dentistry IV, J. D. B. Featherstone, P. Rechmann, D. Fried, eds., Proc. SPIE3248, 130–136 (1998). [CrossRef]
  21. X.-J. Wang, T. E. Milner, J. F. de Boer, Y. Zhang, D. H. Pashley, J. S. Nelson, “Characterization of dentin and enamel by use of optical coherence tomography,” Appl. Opt. 38, 2092–2096 (1999). [CrossRef]
  22. A. Baumgartner, S. Dichtl, C. K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, A. F. Fercher, W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000). [CrossRef]
  23. D. Fried, J. Xie, S. Shafi, J. D. B. Featherstone, T. M. Breunig, C. Le, “Imaging caries lesions and lesions progression with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 7, 618–627 (2002). [CrossRef] [PubMed]
  24. E. N. Marieb, Human Anatomy and Physiology, 5th ed. (Pearson Education, N.J., 2001), pp. 898–901.
  25. A. Gh. Podoleanu, “Unbalanced versus balanced operation in a optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000). [CrossRef]
  26. X. Wang, L. V. Wang, “Propagation of polarized light in birefringent turbid media: a Monte Carlo study,” J. Biomed. Opt. 7, 279–290 (2002). [CrossRef] [PubMed]
  27. K. C. Hadley, A. Vitkin, “Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic and achiral media,” J. Biomed. Opt. 7, 291–299 (2002). [CrossRef] [PubMed]
  28. J. Li, G. Yao, L. V. Wang, “Degree of polarization in laser speckles from turbid media: implication in tissue optics,” J. Biomed. Opt. 7, 307–312 (2002). [CrossRef] [PubMed]
  29. V. Sankaran, J. T. Walsh, D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt. 7, 300–306 (2002). [CrossRef] [PubMed]
  30. H. Kitamura, M. Oda, J. A Hess, Color Atlas of Human Oral Histology, 1st ed. (Ishiyaku EuroAmerica, St. Louis, 1992).
  31. Y. Chen, L. Otis, Q. Zhu, “Study of tissue polarization with polarization-sensitive OCT by linearly and circularly polarized probing light,” in Biomedical Optics, Proc. SPIE, (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited