OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 11 — Apr. 10, 2005
  • pp: 2115–2139

Improved accuracy of reconstructed diffuse optical tomographic images by means of spatial deconvolution: two-dimensional quantitative characterization

Yong Xu, Harry L. Graber, Yaling Pei, and Randall L. Barbour  »View Author Affiliations

Applied Optics, Vol. 44, Issue 11, pp. 2115-2139 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1441 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Systematic characterization studies are presented, relating to a previously reported spatial deconvolution operation that seeks to compensate for the information-blurring property of first-order perturbation algorithms for diffuse optical tomography (DOT) image reconstruction. In simulation results that are presented, this deconvolution operation has been applied to two-dimensional DOT images reconstructed by solving a first-order perturbation equation. Under study was the effect on algorithm performance of control parameters in the measurement (number and spatial distribution of sources and detectors, presence of noise, and presence of systematic error), target (medium shape; and number, location, size, and contrast of inclusions), and computational (number of finite-element-method mesh nodes, length of filter-generating linear system, among others) parameter spaces associated with computation and the use of the deconvolution operators. Substantial improvements in reconstructed image quality, in terms of recovered inclusion location, size, and contrast, are found in all cases. A finding of practical importance is that the method is robust to appreciable differences between the optical coefficients of the media used for filter generation and those of the target media to which the filters are subsequently applied.

© 2005 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging

Original Manuscript: July 21, 2004
Revised Manuscript: November 10, 2004
Manuscript Accepted: November 11, 2004
Published: April 10, 2005

Yong Xu, Harry L. Graber, Yaling Pei, and Randall L. Barbour, "Improved accuracy of reconstructed diffuse optical tomographic images by means of spatial deconvolution: two-dimensional quantitative characterization," Appl. Opt. 44, 2115-2139 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Barbour, H. L. Graber, Y. Xu, Y. Pei, R. Aronson, “Strategies for imaging diffusing media,” Transp. Theory Stat. Phys. 33, 361–371 (2004). [CrossRef]
  2. H. L. Graber, Y. Xu, Y. Pei, R. L. Barbour, “Qualitative and quantitative improvement of optical tomographic reconstructed images via spatial deconvolution: three-dimensional case,” Appl. Opt. 44, 941–953 (2005). [CrossRef] [PubMed]
  3. S. Colak, M. van der Mark, G. W.'t Hooft, J. Hoogenraad, E. van der Linden, F. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quantum Electron. 5, 1143–1158 (1999). [CrossRef]
  4. V. Ntziachristos, A. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after Indocyanine Green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).
  5. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology 218, 261–266 (2001). [CrossRef] [PubMed]
  6. H. Jiang, Y. Xu, N. Iftimia, J. Eggert, K. Klove, L. Baron, L. Fajardo, “Three-dimensional optical tomographic imaging of breast in a human subject,” IEEE Trans. Med. Imaging 20, 1334–1340 (2001). [CrossRef]
  7. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48, 2405–2418 (2003). [CrossRef] [PubMed]
  8. H. Obrig, A. Villringer, “Beyond the visible—imaging the human brain with light,” J. Cereb. Blood Flow Metab. 23, 1–18 (2003). [CrossRef]
  9. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  10. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology 40, 501–510 (2003). [CrossRef] [PubMed]
  11. H. L. Graber, Y. Pei, R. L. Barbour, “Imaging of spatiotemporal coincident states by DC optical tomography,” IEEE Trans. Med. Imaging 21, 852–866 (2002). [CrossRef] [PubMed]
  12. B. W. Pogue, T. O. McBride, U. L. Osterberg, K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Express 4, 270–286 (1999), http://www.opticsexpress.org . [CrossRef] [PubMed]
  13. S. Prince, V. Kolehmainen, J. P. Kaipio, M. A. Franceschini, D. Boas, S. R. Arridge, “Time-series estimation of biological factors in optical diffusion tomography,” Phys. Med. Biol. 48, 1491–1504 (2003). [CrossRef] [PubMed]
  14. V. Kolehmainen, S. Prince, S. R. Arridge, J. P. Kaipio, “State-estimation approach to the nonstationary optical tomography problem,” J. Opt. Soc. Am. A 20, 876–889 (2003). [CrossRef]
  15. V. A. Markel, J. C. Schotland, “Effects of sampling and limited data in optical tomography,” Appl. Phys. Lett. 81, 1180–1182 (2002). [CrossRef]
  16. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 9, 97–109 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  17. T. Budinger, F. Wehrli, S. M. Blumenfeld, F. A. Grunbaum, R. M. Henkelman, P. C. Lauterbur, W. Loeffler, F. Natterer, S. J. Nelson, L. Shepp, R. G. Shulman, B. M. W. Tsui, S. T. Weidman, R. L. Riemer, C. M. Pechura, Mathematics and Physics of Emerging Biomedical Imaging (National Academy Press, Washington, D.C., 1996), p. 138.
  18. Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for dc optical imaging,” Appl. Opt. 40, 5755–5769 (2001). [CrossRef]
  19. It is recognized that techniques for experimental estimation of the bulk or background properties of target media will not yield perfectly accurate results. Consequently, a full characterization of the spatial deconvolution method will require consideration of cases in which the properties of the media used for the computations of I and I0 differ. For reasons of space limitations, the influence of disparities between the media on the accuracy of the deconvolved image is deferred to future publications in this series.
  20. When images are reconstructed from experimental or clinical data, typically there is an appreciable difference between I0and Ir. But as shown in Ref. 18, the normalized-difference method is highly robust to disparities between the media that yield these measurement vectors. Then it is expected that introducing a difference between I0 and Ir will not affect the performance of the spatial deconvolution algorithm. Direct tests of this hypothesis will be another subject presented in future publications.
  21. K. D. Paulsen, H. Jiang, “Spatially-varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys. 22, 691–702 (1995). [CrossRef] [PubMed]
  22. Z. H. Cho, J. P. Jones, M. Singh, Foundation of Medical Imaging (Wiley, New York, 1993), p. 80.
  23. R. Archibald, A. Gelb, “A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity,” IEEE Trans. Med. Imaging 21, 305–319 (2002). [CrossRef] [PubMed]
  24. D. Contini, H. Liszka, A. Sassaroli, G. Zaccanti, “Imaging of highly turbid media by the absorption method,” Appl. Opt. 35, 2315–2324 (1996). [CrossRef] [PubMed]
  25. J. Zhou, J. Bai, P. He, “Spatial location weighted optimization scheme for DC optical tomography,” Opt. Express 11, 141–150 (2003), http://www.opticsexpress.org . [CrossRef] [PubMed]
  26. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Österberg, K. D. Paulsen, “Spatially variant regularization improves diffuse optical tomography,” Appl. Opt. 38, 2950–2961 (1999). [CrossRef]
  27. J. P. Culver, V. Ntziachristos, M. J. Holboke, A. G. Yodh, “Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis,” Opt. Lett. 26, 701–703 (2001). [CrossRef]
  28. Y. Pei, F.-B. Lin, R. L. Barbour, “Modeling of sensitivity and resolution to an included object in homogeneous scattering media and in MRI-derived breast maps,” Opt. Express 5, 203–219 (1999), http://www.opticsexpress.org . [CrossRef] [PubMed]
  29. J. P. Culver, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging,” Med. Phys. 30, 235–247 (2003). [CrossRef] [PubMed]
  30. J. Chang, H. L. Graber, R. L. Barbour, R. Aronson, “Recovery of optical cross-section perturbations in dense scattering media using transport-theory-based imaging operators and steady-state simulated data,” Appl. Opt. 35, 3963–3978 (1996). [CrossRef] [PubMed]
  31. J. Chang, H. L. Graber, R. L. Barbour, “Dependence of image quality on image operator and noise for optical diffusion tomography,” J. Biomed. Opt. 3, 137–144 (1998). [CrossRef] [PubMed]
  32. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001). [CrossRef]
  33. V. E. Pera, E. L. Heffer, H. Siebold, O. Schütz, S. Heywang-Köbrunner, A. Götz, A. Heinig, S. Fantini, “Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors,” J. Biomed. Opt. 8, 517–524 (2003). [CrossRef] [PubMed]
  34. Q. Zhang, J. J. Stott, T. J. Brukilacchio, A. Li, T. Chaves, G. Boverman, T. Wu, M. Chorlton, T. Rafferty, R. H. Moore, D. B. Kopans, D. A. Boas, “Preliminary study of the breast's bulk optical properties using a co-registered tomographic x-ray and optical breast imaging system,” presented at OSA Biomedical Topical Meetings and Tabletop Exhibit, Miami Beach, Fla., 14–17 April 2004.
  35. S. Suzuki, S. Yamaguchi, “Comparison between an image reconstruction method of filtering backprojection and the filtered backprojection method,” Appl. Opt. 27, 2867–2870 (1988). [CrossRef] [PubMed]
  36. C. M. Bishop, Neural Networks for Pattern Recognition (Oxford U. Press, Oxford, UK, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited