OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 11 — Apr. 10, 2005
  • pp: 2140–2153

Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements

Christoph H. Schmitz, David P. Klemer, Rosemarie Hardin, Michael S. Katz, Yaling Pei, Harry L. Graber, Mikhail B. Levin, Rita D. Levina, Nelson A. Franco, William B. Solomon, and Randall L. Barbour  »View Author Affiliations


Applied Optics, Vol. 44, Issue 11, pp. 2140-2153 (2005)
http://dx.doi.org/10.1364/AO.44.002140


View Full Text Article

Enhanced HTML    Acrobat PDF (3133 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dynamic near-infrared optical tomographic measurement instrumentation capable of simultaneous bilateral breast imaging, having a capability of four source wavelengths and 32 source–detector fibers for each breast, is described. The system records dynamic optical data simultaneously from both breasts, while verifying proper optical fiber contact with the tissue through implementation of automatic schemes for evaluating data integrity. Factors influencing system complexity and performance are discussed, and experimental measurements are provided to demonstrate the repeatability of the instrumentation. Considerations in experimental design are presented, as well as techniques for avoiding undesirable measurement artifacts, given the high sensitivity and dynamic range (1:109) of the system. We present exemplary clinical results comparing the measured physiologic response of a healthy individual and of a subject with breast cancer to a Valsalva maneuver.

© 2005 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.3830) Medical optics and biotechnology : Mammography
(170.6960) Medical optics and biotechnology : Tomography

History
Original Manuscript: July 21, 2004
Revised Manuscript: November 11, 2004
Manuscript Accepted: November 17, 2004
Published: April 10, 2005

Citation
Christoph H. Schmitz, David P. Klemer, Rosemarie Hardin, Michael S. Katz, Yaling Pei, Harry L. Graber, Mikhail B. Levin, Rita D. Levina, Nelson A. Franco, William B. Solomon, and Randall L. Barbour, "Design and implementation of dynamic near-infrared optical tomographic imaging instrumentation for simultaneous dual-breast measurements," Appl. Opt. 44, 2140-2153 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-11-2140


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Schmitz, H. L. Graber, R. D. Levina, M. B. Levin, R. L. Barbour, “Data integrity assessment and instrument calibration for the DYNOT imaging system,” in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation ThF28.
  2. C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002). [CrossRef]
  3. C. H. Schmitz, H. L. Graber, R. L. Levina, M. B. Levin, R. L. Barbour, “Data integrity assessment and instrument calibration for the DYNOT imaging system,” in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation WF35.
  4. C. H. Schmitz, Y. Pei, H. L. Graber, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for real-time dynamic optical tomography,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. Kaschke, eds., Proc. SPIE4431, 282–291 (2001). [CrossRef]
  5. D. P. Klemer, R. L. Barbour, C. H. Schmitz, R. L. Graber, Y. Pei, R. E. Hardin, M. S. Katz, N. A. Franco, A. G. Smeraldi, “Multi-site near-infrared tomographic imaging of the brain,” in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation WF35.
  6. A. G. Smeraldi, N. A. Franco, H. L. Graber, D. P. Klemer, R. E. Hardin, M. S. Katz, C. H. Schmitz, T. F. Panetta, R. L. Barbour, “Evaluation of peripheral vascular disease using non-invasive dynamic optical tomography,” in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation WF36.
  7. R. E. Hardin, D. P. Klemer, M. S. Katz, N. A. Franco, H. L. Graber, C. H. Schmitz, R. L. Barbour, A. G. Smeraldi, T. F. Panetta, “Application of dynamic optical tomography for the detection of a multi-phase physiologic response to Valsalva maneuver in healthy breast tissue,” in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation WF37.
  8. M. S. Katz, R. E. Hardin, N. A. Franco, A. D. Smeraldi, D. P. Klemer, C. H. Schmitz, H. L. Graber, R. L. Barbour, “Physiological variation in vascular reactivity of breast tissue over the menstrual cycle demonstrated by optical tomography,” in Biomedical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation WA5.
  9. Y. Pei, H. L. Graber, R. L. Barbour, “Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging,” Appl. Opt. 40, 5755–5769 (2001). [CrossRef]
  10. R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, C. H. Schmitz, “Optical tomographic imaging of dynamic features of dense-scattering media,” J. Opt. Soc. Am. A 18, 3018–3036 (2001). [CrossRef]
  11. Y. Pei, H. L. Graber, Y. Xu, R. L. Barbour, “dynaLYZE—an analysis package for time-series NIRS imaging data,” in Bio-medical Topical Meetings on CD-ROM (Optical Society of America, Washington, D.C., 2004), presentation FH42.
  12. R. A. Nishimura, A. J. Tajik, “The Valsalva maneuver and response revisited,” Mayo Clin. Proc. 61, 211–217 (1986). [CrossRef] [PubMed]
  13. R. K. Jain, “Normalizing tumor vasculature with anti-angiogenetic therapy: a new paradigm for combination therapy,” Nat. Med. 7, 987–989 (2001). [CrossRef] [PubMed]
  14. H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, J. E. Mayhew, “Signal source separation and localization in the analysis of dynamic near infrared optical tomographic time series,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, eds. Proc. SPIE4955, 31–51 (2003). [CrossRef]
  15. R. L. Barbour, H. L. Graber, C. H. Schmitz, F. Tarantini, G. Khoury, D. J. Naar, T. F. Panetta, T. Lewis, Y. Pei, “Time-frequency analysis of functional optical mammographic images,” in Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-Muraca, Proc. SPIE4955, 84–95 (2003). [CrossRef]
  16. R. L. Barbour, H. L. Graber, Y. Pei, C. H. Schmitz, Y. Xu, A. Di Martino, F. X. Castellanos, D. P. Klemer, R. E. Hardin, N. A. Franco, M. S. Katz, M. E. Zenilman, A. G. Smeraldi, T. F. Panetta, “Functional imaging of the vascular bed by dynamic optical tomography,” in Physiology, Function, and Structure from Medical Images, A. A. Amini, A. Manduca, eds., Proc. SPIE5369, 132–149 (2004).
  17. M. Cope, D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol. Eng. Comput. 26, 289–294 (1988). [CrossRef] [PubMed]
  18. D. T. Delpy, M. Cope, P. Van der Zee, S. Arridge, S. Wray, J. Wyatt, “Estimation of optical pathlength through tissue from direct time of flight measurement,” Phys. Med. Biol. 33, 1433–1442 (1988). [CrossRef] [PubMed]
  19. C. H. Schmitz, H. L. Graber, H. B. Luo, I. Arif, J. Hira, Y. L. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, N. Ramirez, S. L. S. Barbour, R. L. Barbour, “Instrumentation and calibration protocol for imaging dynamic features in dense-scattering media by optical tomography,” Appl. Opt. 39, 6466–6486 (2000). [CrossRef]
  20. A. Sassaroli, S. Fantini, “Comment on the modified Beer–Lambert law for scattering media,” Phys. Med. Biol. 49, N255–N257 (2004). [CrossRef] [PubMed]
  21. An interesting implication of the main result of Ref. 20 is that even if pulsed time-resolved or frequency-domain measurements were made, the value of d still could not be experimentally determined.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited