OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 11 — Apr. 10, 2005
  • pp: 2213–2220

In vivo absorption spectroscopy of tumor sensitizers with femtosecond white light

Claes af Klinteberg, Antonio Pifferi, Stefan Andersson-Engels, Rinaldo Cubeddu, and Sune Svanberg  »View Author Affiliations

Applied Optics, Vol. 44, Issue 11, pp. 2213-2220 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A system based on a femtosecond white-light continuum and a streak camera was used for recordings of the in vivo absorption spectra of the tumor-seeking agent disulphonated aluminum phthalocyanine. Measurements for different drug doses were performed on tumor tissue (muscle-implanted adenocarcinoma) and normal muscle tissue in rats. It was found that the shape of the spectrum is tissue dependent. The peak of the absorption spectrum is blueshifted in tumor tissue as compared with the muscle. Thus the contrast in the drug-related absorption can be altered by up to a factor of 2 from the primary drug molecular-concentration contrast between normal muscle and tumor by the proper selection of the illumination wavelength.

© 2005 Optical Society of America

OCIS Codes
(170.5180) Medical optics and biotechnology : Photodynamic therapy
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

Original Manuscript: July 7, 2004
Revised Manuscript: December 5, 2004
Manuscript Accepted: December 6, 2004
Published: April 10, 2005

Claes af Klinteberg, Antonio Pifferi, Stefan Andersson-Engels, Rinaldo Cubeddu, and Sune Svanberg, "In vivo absorption spectroscopy of tumor sensitizers with femtosecond white light," Appl. Opt. 44, 2213-2220 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “Absorption-spectrum of hematoporphyrin derivative in-vivo in a murine tumor-model,” Photochem. Photobiol. 60, 582–585 (1994). [CrossRef] [PubMed]
  2. W. M. Star, J. Versteeg, W. van Putten, H. Marijnissen, “Wavelength dependence of hematoporphyrin derivative photodynamic treatment effects on rat ears,” Photochem. Photobiol. 52, 547–554 (1990). [CrossRef] [PubMed]
  3. T. J. Farrell, M. C. Olivo, M. S. Patterson, H. Wrona, B. C. Wilson, “Investigation of the dependence of tissue necrosis on irradiation wavelength and time post injection using a photodynamic threshold dose model,” in Photodynamic Therapy and Biomedical Lasers, P. Spinelli, M. Dal Fante, R. Marchesini, eds. (Elsevier, Amsterdam, 1992), pp. 830–834.
  4. G. H. M. Gijsbers, D. Breederveld, M. J. C. van Gemert, T. A. Boon, J. Langelaar, R. P. H. Rettschnick, “In vivo fluorescence excitation and emission spectra of hematoporphyrinderivative,” Lasers Life Sci. 1, 29–48 (1986).
  5. C. J. Gomer, D. R. Doiron, N. Rucker, N. J. Razum, S. W. Fountain, “Action spectrum (620–640 nm) for hematoporphyrin derivative induced cell killing,” Photochem. Photobiol. 39, 365–368 (1984). [CrossRef] [PubMed]
  6. S. Andersson-Engels, R. Berg, A. Persson, S. Svanberg, “Multispectral tissue characterization with time-resolved detection of diffusely scattered white light,” Opt. Lett. 18, 1697–1699 (1993). [CrossRef] [PubMed]
  7. S. Svanberg, J. Larsson, A. Persson, C. G. Wahlström, “Lund high-power laser facility—systems and first results,” Phys. Scr. 49, 187–197 (1994). [CrossRef]
  8. W. J. Jones, B. P. Stoicheff, “Inverse Raman spectra: induced absorption at optical frequencies,” Phys. Rev. Lett. 13, 657–659 (1964). [CrossRef]
  9. G. Hedlund, H. O. Sjögren, “Induction of transplantation immunity to rat colon carcinoma isografts by implantation of intact fetal colon tissue,” Int. J. Cancer 26, 71–73 (1980). [CrossRef] [PubMed]
  10. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  11. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  12. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C: The Art Of Scientific Computing (Cambridge U. Press, New York, 1992).
  13. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23, 1625–1633 (1996). [CrossRef] [PubMed]
  14. J. Johansson, R. Berg, A. Pifferi, S. Svanberg, L. O. Björn, “Time-resolved studies of light propagation in Crassula and Phaseolus leaves,” Photochem. Photobiol. 69, 242–247 (1999). [CrossRef]
  15. M. S. Patterson, B. C. Wilson, J. W. Feather, D. M. Burns, W. Pushka, “The measurement of dihematoporphyrin ether concentration in tissue by reflectance spectrophotometry,” Photochem. Photobiol. 46, 337–343 (1987). [CrossRef] [PubMed]
  16. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992). [CrossRef] [PubMed]
  17. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997). [CrossRef] [PubMed]
  18. A. A. Stratonnikov, N. E. Edinca, D. V. Klimov, K. G. Linkov, V. B. Loschenov, E. A. Luckjanets, G. A. Meerovich, E. G. Vakulovskaya, “The control of photosensitizer in tissue during photodynamic therapy by means of absorption spectroscopy,” in Photochemotherapy: Photodynamic Therapy and Other Modalities II, S. B. Brown, B. Ehrenberg, J. Moan, eds., Proc. SPIE2924, 49–60 (1996).
  19. R. A. Weersink, J. E. Hayward, K. R. Diamond, M. S. Patterson, “Accuracy of noninvasive in vivo measurements of photosensitizer uptake based on a diffusion model of reflectance spectroscopy,” Photochem. Photobiol. 66, 326–335 (1997). [CrossRef] [PubMed]
  20. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast,” Appl. Phys. Lett. 74, 874–876 (1999). [CrossRef]
  21. R. Cubeddu, G. Canti, M. Musolino, A. Pifferi, P. Taroni, G. Valentini, “In vivo absorption spectrum of disulphonated aluminium phthalocyanine in a murine tumour model,” J. Photochem. Photobiol. B 34, 229–235 (1996). [CrossRef] [PubMed]
  22. J. Griffiths, J. Cruse-Sawyer, S. R. Wood, J. Schofield, S. B. Brown, B. Dixon, “On the photodynamic therapy action spectrum of zinc phthalocyanine tetrasulphonic acid in vivo,” J. Photochem. Photobiol. B 24, 195–199 (1994). [CrossRef] [PubMed]
  23. M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foley, D. Phillips, “Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine,” J. Photochem. Photobiol. B 22, 105–117 (1994). [CrossRef] [PubMed]
  24. J. Moan, K. Berg, J. C. Bommer, A. Western, “Action spectra of phthalocyanines with respect to photosensitization of cells,” Photochem. Photobiol. 56, 171–175 (1992). [CrossRef] [PubMed]
  25. A. A. Stratonnikov, General Physics Institute, Moscow (personal communication, 2001).
  26. R. Cubeddu, G. Canti, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Study on the absorption properties of sulfonated aluminum phthalocyanine in vivo and ex vivo in murine tumor models,” J. Biomed. Opt. 2, 131–139 (1997). [CrossRef] [PubMed]
  27. J. Swartling, J. Svensson, O. Bengtsson, K. Terike, S. Andersson-Engels, “Fluorescence spectra provide information on the depth of fluorescent lesions in tissue,” Appl. Opt. 44, 1934–1941 (2005). [CrossRef] [PubMed]
  28. M. Miwa, Y. Ueda, B. Chance, “Development of a time-resolved spectroscopy system for quantitative noninvasive tissue measurements,” in Optical Tomography, Photon Migration and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 142–149 (1995). [CrossRef]
  29. M. Oda, Y. Yamashita, G. Nishimura, M. Tamura, “A simple and novel algorithm for time-resolved multiwavelength oximetry,” Phys. Med. Biol. 41, 551–562 (1996). [CrossRef] [PubMed]
  30. H. Zhang, Y. Tsuchiya, T. Urakami, M. Miwa, Y. Yamashita, “Time integrated spectroscopy of turbid media based on the microscopic Beer-Lambert law: consideration of the wavelength dependence of scattering properties,” Opt. Commun. 153, 314–322 (1998). [CrossRef]
  31. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, “Compact tissue oximeter based on dual-wavelength multichannel time-resolved reflectance,” Appl. Opt. 38, 3670–3680 (1999). [CrossRef]
  32. J. Johansson, S. Folestad, M. Josefson, A. Sparén, C. Abrahamsson, S. Andersson-Engels, S. Svanberg, “Time-resolved NIR/VIS spectroscopy for analysis of solids: pharmaceutical tablets,” Appl. Spectrosc. 56, 725–731 (2002). [CrossRef]
  33. J. K. Ranka, R. S. Windeler, J. Stentz, “Visible continuum generation in air-silica micro structure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  34. T. A. Birks, W. J. Wadsworth, P. St. J. Russell, “Super-continuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited