OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2241–2249

Subsurface damage in some single crystalline optical materials

Joseph A. Randi, John C. Lambropoulos, and Stephen D. Jacobs  »View Author Affiliations

Applied Optics, Vol. 44, Issue 12, pp. 2241-2249 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a nondestructive method for estimating the depth of subsurface damage (SSD) in some single crystalline optical materials (silicon, lithium niobate, calcium fluoride, magnesium fluoride, and sapphire); the method is established by correlating surface microroughness measurements, specifically, the peak-to-valley (p–v) microroughness, to the depth of SSD found by a novel destructive method. Previous methods for directly determining the depth of SSD may be insufficient when applied to single crystals that are very soft or very hard. Our novel destructive technique uses magnetorheological finishing to polish spots onto a ground surface. We find that p–v surface microroughness, appropriately scaled, gives an upper bound to SSD. Our data suggest that SSD in the single crystalline optical materials included in our study (deterministically microground, lapped, and sawed) is always less than 1.4 times the p–v surface microroughness found by white-light interferometry. We also discuss another way of estimating SSD based on the abrasive size used.

© 2005 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(120.6660) Instrumentation, measurement, and metrology : Surface measurements, roughness

Original Manuscript: December 30, 2003
Revised Manuscript: November 4, 2004
Manuscript Accepted: November 26, 2004
Published: April 20, 2005

Joseph A. Randi, John C. Lambropoulos, and Stephen D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Golini, A. Lindquist, M. Atwood, C. Ferreira, “Influence of process parameters in deterministic microgrinding,” in Optical Fabrication and Testing Workshop, Vol. 13 of 1994 OSA Technical Digest Series, (Optical Society of America, Washington, D.C., 1994), pp. 28–31. See also Ref. 2.
  2. H. H. Pollicove, D. Golini, J. Ruckman, “Computer aided optics manufacturing,” Opt. Photon. News, June1994, pp. 15–19. [CrossRef]
  3. T. S. Izumitani, Optical Glass (American Institute of Physics, New York, 1986), Chap. 4.
  4. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, New York, 1993).
  5. T. G. Bifano, T. A. Dow, R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” ASME J. Eng. Ind.113, 184–189.
  6. D. Golini, S. D. Jacobs, “Transition between brittle and ductile mode in loose abrasive grinding,” in Advanced Optical Manufacturing and Testing, L. R. Baker, P. B. Reid, G. M. Sanger, eds., Proc. SPIE1333, 80–91 (1990). [CrossRef]
  7. J. C. Lambropoulos, S. Xu, T. Fang, D. Golini, “Twyman effect mechanics in grinding and microgrinding,” Appl. Optics 35, 5704–5713 (1996). [CrossRef]
  8. D. R. Clarke, M. C. Kroll, P. D. Kirchner, R. F. Cook, B. J. Hockey, “Amorphization and conductivity of silicon and germanium induced by indentation,” Phys. Rev. Lett. 60, 2156–2159 (1988). [CrossRef] [PubMed]
  9. A. Kailer, Y. G. Gogotsi, K. G. Nickel, “Phase transformations of silicon caused by contact loading,” J. Appl. Phys. 81, 3057–3063 (1997). [CrossRef]
  10. A. B. Mann, D. van Heerden, J. B. Pethica, P. Bowes, T. P. Weihs, “Contact resistance and phase transformations during nanoindentation of silicon,” Philos. Mag. A82, 1921–1929 (2002). [CrossRef]
  11. H. Saka, A. Shimatani, M. Suganuma, Suprijadi, “Transmission electron microscopy of amorphization and phase transformation beneath indents in Si,” Philos. Mag. A82, 1971–1982 (2002). [CrossRef]
  12. T. Juliano, V. Domnich, Y. Gogotsi, “Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: a statistical study,” J. Mater. Res. 19, 3099–3108 (2004). [CrossRef]
  13. F. W. Preston, “Structure of abraded glass surfaces,” Trans. Opt. Soc. 23(3), 141–164 (1922). [CrossRef]
  14. E. Brinksmeier, “State-of-the-art non-destructive measurement of subsurface material properties and damages,” Precis. Eng. 11, 211–224 (1989). [CrossRef]
  15. B. J. Hockey, “Observations by TEM on the subsurface damage produced in aluminum oxide by mechanical polishing and grinding,” Proc. Br. Ceram. Soc. 20, 95–115 (1972).
  16. B. G. Cohen, M. W. Frocht, “X-ray measurement of elastic strain and annealing in semiconductors,” Solid-State Electron. 13, 105–112 (1970). [CrossRef]
  17. Z. Hang, H. Shen, F. H. Pollak, “Comprehensive investigation of polish-induced surface strain in 〈100〉 and 〈111〉 GaAs and InP,” J. Appl. Phys. 64, 3233–3242 (1988). [CrossRef]
  18. D. F. Weirauch, “A study of lapping and polishing damage in single-crystal CdTe,” J. Electrochem. Soc. 132, 250–254 (1985). [CrossRef]
  19. J. A. Slotwincki, N. N. Hsu, G. V. Blessing, “Ultrasonic measurement of surface and subsurface structure in ceramics,” in Proceeding of the International Conference on Machining of Advanced Materials, NIST Special Publ. 847, S. Jahanmir, ed. (U. S. Gov. Printing Office, Washington, D.C., 1993).
  20. M. Taneya, Y. Sugimoto, K. Akita, “Characterization of subsurface damage in GaAs processed by Ga+ focused ion-beam-assisted Cl2 etching using photoluminescence,” J. Appl. Phys. 66, 1375–1381 (1989). [CrossRef]
  21. E. N. Pugh, L. E. Samuels, “Damaged layers in abraded silicon surfaces,” J. Electrochem. Soc. 111, 1430–1432 (1964). [CrossRef]
  22. H. H. K. Xu, S. Jahanmir, “Simple technique for observing subsurface damage in machining of ceramics,” J. Am. Ceram. Soc. 77, 1388–1390 (1994). [CrossRef]
  23. D. F. Edwards, P. P. Hed, “Optical glass fabrication technology. 2. Relationship between surface roughness and subsurface damage,” Appl. Opt. 26, 4677–4680 (1987). [CrossRef]
  24. Y. Zhou, P. D. Funkenbusch, D. J. Quesnel, D. Golini, A. Lindquist, “Effect of etching and imaging mode on the measurement of subsurface damage in microground optical glasses,” J. Amer. Ceram. Soc. 77, 3277–3280 (1994). [CrossRef]
  25. S. R. Arrasmith, S. D. Jacobs, J. C. Lambropoulos, A. Maltsev, D. Golini, W. I. Kordonski, E. E. Cleaveland, “The use of magnetorheological finishing (MRF) to relieve residual stress and subsurface damage on lapped semiconductor silicon wafers,” in Optical Manufacturing and Testing IV, H. P. Stahl, ed., Proc. SPIE4451, 286–294 (2001). [CrossRef]
  26. J. C. Lambropoulos, K.-H. Chen, T. J. Lambropoulos, “Deformation of silicon surfaces,” in Optical Materials and Structures Technologies, W. A. Goodman, ed., Proc. SPIE5179, 203–214 (2003). [CrossRef]
  27. V. A. Perevoshchikov, V. D. Skupov, “Accumulation of defects in silicon wafers from operation to operation during mechanical finishing process,” Sov. J. Opt. Technol. 56, 302–305 (1989).
  28. I. Blech, D. Dang, “Silicon wafer deformation after backside grinding,” Solid State Technol., August, 1994, pp. 74–76.
  29. D. Haneman, “Strain energy of (111) and (-1-1-1) surfaces of InSb,” Brit. J. Appl. Phys. 16, 411–413 (1965). [CrossRef]
  30. O. Podzimek, C. J. Heuvelman, “Residual stress and deformation energy under ground surfaces of brittle solids,” Ann. CIRP 35, 397–400 (1986). [CrossRef]
  31. O. Podzimek, “Deformation energy under optical surfaces,” in High Power Lasers: Sources, Laser–Material Interactions, High Excitations, and Fast Dynamics, E.-W. Kreutz, D. Schuoecker, eds., Proc. SPIE801, 221–225 (1987).
  32. S. Chandrasekhar, M. C. Shaw, B. Bhushan, “Comparison of grinding and lapping of ferrites and metals,” ASME J. Eng. Ind. 109, 76–82 (1987). [CrossRef]
  33. J. C. Lambropoulos, B. E. Gillman, S. D. Jacobs, H. J. Stevens, “Deterministic microgrinding, lapping, and polishing of glass-ceramics,” J. Amer. Ceram. Soc. (to be published).
  34. Y. Ahn, S. Chandrasekhar, T. N. Farris, “Determination of surface residual stresses in machined ceramics using indentation fracture,” J. Manuf. Sci. Eng. 118, 483–489 (1996). [CrossRef]
  35. F. K. Aleinikov, “The effect of certain physical and mechanical properties on the grinding of brittle materials,” Sov. Phys. Tech. Phys. 27, 2529–2538 (1957).
  36. J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, J. Ruckman, “Non-contact estimate of grinding-induced subsurface damage,” in Optical Instrumentation and Testing III, H. P. Stahl, ed., Proc. SPIE3782, 41–50 (1999).
  37. J. C. Lambropoulos, “From abrasive size to subsurface damage in grinding,” in Optical Fabrication and Testing, OSA Technical Digest (Optical Society of America, Washington, D.C., 2000), pp. 17–18.
  38. J. C. Lambropoulos, S. D. Jacobs, J. Ruckman, “Material removal mechanisms from grinding to polishing,” Ceram. Trans. 102, 113–128 (1999).
  39. ISP Optics, 1 Bridge St., Irvington, N.Y. 10533, www.ispoptics.com .
  40. Crystal Systems, 27 Congress St., Salem, Mass. 01970, www.crystalsystems.com .
  41. Crystal Technology Inc., 1040 East Meadow Circle, Palo Alto, Calif. 94303-4230.
  42. F. Ebrahimi, L. Kalwani, “Fracture anisotrophy in silicon single crystal,” Mat. Sci. Eng. A 268, 116–126 (1999). [CrossRef]
  43. T. Fang, “Near surface mechanical properties of optical materials in deterministic microgrinding,” Ph.D. Thesis (University of Rochester, Rochester, New York, 1997).
  44. Optipro Systems, 6368 Dean Parkway, Ontario, N.Y. 14519-8939, www.optipro.com .
  45. NewView 5000: Objective, 20× Mirau; FDA resolution, high; scan length, 20 µm bipolar; min mod, 2.00; min area size, 7 (Zygo Corp., Laurel Brook Road, Middlefield, Conn. 06455, www.zygo.com ).
  46. S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. I. Kordonski, S. Hogan, P. Dumas, “Details of polishing spot in magnetorheological finishing (MRF),” in Optical Manufacturing and Testing III, H. Stahl, ed., Proc. SPIE3782, 92–100 (1999). [CrossRef]
  47. J. A. Randi, J. C. Lambropoulos, S. D. Jacobs, “Determination of subsurface damage in optical materials using a noninvasive technique,” in Optical Fabrication and Testing Digest (Optical Society of America, Washington, D.C., 2002), pp. 61–63.
  48. Form Talysurf Series 2, Taylor/Hobson, Suite 350, 2100 Golf Road, Rolling Meadows, Ill. 60008.
  49. Olympus Vanox-T Model:AHMT, Olympus Optical Co., Inc.22-2, Nishishinjuka 1-chrome, Shinjuku-ku Tokyo, Japan.
  50. Ono Sokki EG-133, 1-16-1 Hakusan, Midori-ku, Yokohama 226-8507, Japan.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited