OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2288–2299

Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating

Yang Liu, Young L. Kim, and Vadim Backman  »View Author Affiliations

Applied Optics, Vol. 44, Issue 12, pp. 2288-2299 (2005)

View Full Text Article

Acrobat PDF (562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Understanding the propagation of polarized light in tissue is crucial for a number of biomedical optics applications. Here we report the development of a bioengineered connective tissue model fabricated by the combination of scaffolding and cross-linking techniques to study light transport in biological tissue. It demonstrates great similarity to real connective tissue in its optical properties as well as microarchitecture. Moreover, the optical properties of the model can be reproducibly controlled. As an example, we report the utilization of this model to study the effect of epithelium and the underlying connective tissue on the depth selectivity of polarization gating.

© 2005 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(260.5430) Physical optics : Polarization
(290.1350) Scattering : Backscattering

Yang Liu, Young L. Kim, and Vadim Backman, "Development of a bioengineered tissue model and its application in the investigation of the depth selectivity of polarization gating," Appl. Opt. 44, 2288-2299 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. R. Anderson, "Polarized-light examination and photography of the skin," Arch. Dermatol. 127, 1000-1005 (1991).
  2. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, "Measuring cellular structure at submicrometer scale with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 7, 887-893 (2001).
  3. I. Georgakoudi, B. C. Jacobson, J. Van Dam, V. Backman, M. B. Wallace, M. G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G. A. Thomas, L. T. Perelman, and M. S. Feld, "Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett's esophagus," Gastroenterology 120, 1620-1629 (2001).
  4. M. Bartlett, G. Huang, L. Larcom, and H. B. Jiang, "Measurement of particle size distribution in mammalian cells in vitro by use of polarized light spectroscopy," Appl. Opt. 43, 1296-1307 (2004).
  5. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, "Spectroscopic diagnosis of bladder cancer with elastic light scattering," Lasers Surg. Med. 17, 350-357 (1995).
  6. A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. J. Berger, D. Hsiang, J. Butler, R. F. Holcombe, and B. J. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002).
  7. A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Res. 63, 3556-3559 (2003).
  8. K. Sokolov, R. Drezek, K. Gossage, and R. Richards-Kortum, "Reflectance spectroscopy with polarized light: is it sensitive to cellular and nuclear morphology," Opt. Express 5, 302-317 (1999).
  9. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004).
  10. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, "Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures," J. Biomed. Opt. 7, 378-387 (2002).
  11. Y. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromine, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron. 9, 243-257 (2003).
  12. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, "Imaging skin pathology with polarized light," J. Biomed. Opt. 7, 329-340 (2002).
  13. S. L. Jacques, J. R. Roman, and K. Lee, "Imaging superficial tissues with polarized light," Lasers Surg. Med. 26, 119-129 (2000).
  14. V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, "Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ," IEEE J. Sel. Top. Quantum Electron. 5, 1019-1026 (1999).
  15. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, "Detection of preinvasive cancer cells," Nature 406, 35-36 (2000).
  16. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light-scattering spectroscopy," Nat. Med. 7, 1245-1248 (2001).
  17. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
  18. T. M. Johnson and J. R. Mourant, "Polarized wavelength-dependent measurements of turbid media," Opt. Express 4, 200-216 (1999).
  19. H. K. Roy, Y. Liu, R. K. Wali, Y. Kim, M. J. Goldberg, A. K. Kromine, and V. Backman, "Four-dimensional elastic light scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis," Gastroenterology 126, 1071-1081 (2004).
  20. A. Amelink, H. Sterenborg, M. P. L. Bard, and S. A. Burgers, "In vivo measurement of the local optical properties of tissue by use of differential pathlength spectroscopy," Opt. Lett. 29, 1087-1089 (2004).
  21. S. A. Boppart, B. E. Bouma, C. Pitris, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, "In vivo cellular optical coherence tomography imaging," Nat. Med. 4, 861-865 (1998).
  22. S. G. Demos and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
  23. J. A. Izatt, M. D. Kulkarni, H. W. Wang, K. Kobayashi, and M. V. Sivak, "Optical coherence tomography and microscopy in gastrointestinal tissues," IEEE J. Sel. Top. Quantum Electron. 2, 1017-1028 (1996).
  24. S. Jiao, G. Yao, and L. Wang, "Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography," Appl. Opt. 39, 6318-6324 (2000).
  25. Y. L. Kim, Y. Liu, V. M. Turzhitsky, H. K. Roy, R. K. Wali, and V. Backman, "Coherent backscattering spectroscopy," Opt. Lett. 29, 1906-1908 (2004).
  26. Q. Liu and N. Ramanujam, "Experimental proof of the feasibility of using angled fiber-optic probe for depth-sensitive fluorescence spectroscopy of turbid media," Opt. Lett. 29, 2034-2036 (2004).
  27. V. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE Press, Bellingham, Wash., 2002), pp. 312-352.
  28. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, "Comparison of polarized-light propagation in biological tissue and phantoms," Opt. Lett. 24, 1044-1046 (1999).
  29. V. Sankaran, J. T. Walsh, and D. J. Maitland, "Polarized light propagation through tissue phantoms containing densely packed scatterers," Opt. Lett. 25, 239-241 (2000).
  30. V. Sankaran, J. T. Walsh, and D. J. Maitland, "Comparative study of polarized light propagation in biologic tissues," J. Biomed. Opt. 7, 300-306 (2002).
  31. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J. Biomed. Opt. 7, 148-156 (2002).
  32. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA 99, 11014-11019 (2002).
  33. G. Marquez, L. V. Wang, C. J. Wang, and Z. B. Hus, "Development of tissue-simulating optical phantoms: poly-N-isopropylacrylamide solution entrapped inside a hydrogel," Phys. Med. Biol. 44, 309-318 (1999).
  34. W. Bloom, D. W. Fawcett, and A. A. Maximow, A Textbook of Histology, 10th ed. (Saunders, Philadelphia, 1975), pp. 133-167.
  35. E. Sachlos and J. T. Czernuszka, "Making tissue engineering scaffolds work. Review on the application of solid freeform fabrication technology to the production of tissue engineering scaffolds," Eur. Cells Mater. 5, 29-40 (2003).
  36. M. A. Hayat, Principles and Techniques of Electron Microscopy: Biological Applications, 3rd ed. (CRC Press, Boca Raton, Fla., 1989).
  37. A. Boyde, E. Bailey, S. J. Jones, and A. Tamarin, "Dimensional changes during specimen preparation for scanning electron microscopy," Scanning Electron Microsc. 1, 507-518 (1977).
  38. A. Boyde and F. Franc, "Freeze-drying shrinkage of glutaraldehyde-fixed liver," J. Microsc. (Oxford) 122, 75-86 (1981).
  39. S. A. Prahl, "Optical property measurements using the inverse adding-doubling program," (Oregon Medical Laser Center, St. Vincent Hospital, 9205 S. W. Barnes Road, Portland, Oreg. 97225), http://omlc.ogi.edu/software/iad/, January 1999.
  40. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993).
  41. J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993).
  42. A. J. Welch and M. J. C. Vangemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum, New York, 1995).
  43. J. F. Beek, P. Blokland, P. Posthumus, M. Aalders, J. W. Pickering, H. Sterenborg, and M. J. C. vanGemert, "In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm," Phys. Med. Biol. 42, 2255-2261 (1997).
  44. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
  45. L. P. Gartner and J. L. Hiatt, Color Atlas of Histology, 2nd ed. (Williams and Wilkins, Baltimore, Md., 1994), pp. 260-261.
  46. W. Bloom, D. W. Fawcett, and A. A. Maximow, A Textbook of Histology, 10th ed. (Saunders, Philadelphia, Pa., 1994).
  47. K. A. Warfel and M. T. Hull, "Scanning electron microscopic study of the epitheliual-mesenchymal junction of the esophagus," Scanning Electron Microsc. Pt 2, 697-701 (1984).
  48. R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, "Group index of the human cornea at 1.3-mm wavelength obtained in vitro by optical coherence domain reflectometry," Opt. Lett. 29, 83-85 (2004).
  49. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited