OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2300–2310

Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid

Adam B. Milstein, Michael D. Kennedy, Philip S. Low, Charles A. Bouman, and Kevin J. Webb  »View Author Affiliations

Applied Optics, Vol. 44, Issue 12, pp. 2300-2310 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for detecting and localizing a fluorescing tumor obscured underneath several millimeters of a multiply scattering, homogeneous medium from fluorescence measurements made above the surface. Using a statistical model of the measurement system, we develop approaches for detection by use of a binary hypothesis testing approach and localization by use of maximum-likelihood estimation. We also compute the probability of tumor detection and the Cramér–Rao lower bound for the localization estimate error, which are performance metrics that could potentially be optimized in an experimental design. We validate the methods in an experimental study involving an excised mouse tumor tagged with a new folate-indocyanine dye and obscured under a tissue-simulating lipid suspension.

© 2005 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(290.7050) Scattering : Turbid media

Original Manuscript: July 30, 2004
Revised Manuscript: November 21, 2004
Manuscript Accepted: November 23, 2004
Published: April 20, 2005

Adam B. Milstein, Michael D. Kennedy, Philip S. Low, Charles A. Bouman, and Kevin J. Webb, "Statistical approach for detection and localization of a fluorescing mouse tumor in Intralipid," Appl. Opt. 44, 2300-2310 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Jager, H. Feistel, E. M. Paterok, G. Ronay, A. H. Tulusan, F. Wolf, N. Lang, “Resection guided by antibodies (RE-GAJ): a diagnostic procedure during second-look operation in ovarian cancer patients,” Br. J. Cancer Suppl. 10, 18–20 (1990).
  2. V. Ntziachristos, C. Bremer, R. Weissleder, “Fluorescence imaging with near-infrared light,” Eur. Radiol. 13, 195–208 (2003). [PubMed]
  3. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. Am. A 21, 1035–1049 (2004). [CrossRef]
  4. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081–3094 (2003). [CrossRef] [PubMed]
  5. R. Roy, E. M. Sevick-Muraca, “Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration,” Appl. Opt. 40, 2206–2215 (2001). [CrossRef]
  6. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996). [CrossRef]
  7. J. Chang, H. L. Graber, R. L. Barbour, “Luminescence optical tomography of dense scattering media,” J. Opt. Soc. Am. A 14, 288–299 (1997). [CrossRef]
  8. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001). [CrossRef]
  9. E. Shives, Y. Xu, H. Jiang, “Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,” Opt. Express 10, 1557–1562 (2002), www.opticsexpress.org . [CrossRef] [PubMed]
  10. Y. Chen, G. Zheng, Z. H. Zhang, D. Blessington, M. Zhang, H. Li, Q. Liu, L. Zhou, X. Intes, S. Achilefu, B. Chance, “Metabolism-enhanced tumor localization by fluorescence imaging: in vivo animal studies,” Opt. Lett. 28, 2070–2072 (2003). [CrossRef] [PubMed]
  11. I. Gannot, A. Garashi, G. Gannot, V. Chernomordik, A. Gandjbakhche, “In vivo quantitative three-dimensional localization of tumor labeled with exogenous specific fluorescence markers,” Appl. Opt. 42, 3073–3080 (2003). [CrossRef] [PubMed]
  12. E. L. Hull, M. G. Nichols, T. H. Foster, “Localization of luminescent inhomogeneities in turbid media with spatially resolved measurements of cw diffuse luminescent emittance,” Appl. Opt. 37, 2755–2765 (1998). [CrossRef]
  13. M. Pfister, B. Scholz, “Localization of fluorescent spots with space-space MUSIC for mammographylike measurement system,” J. Biomed. Opt. 9, 481–487 (2004). [CrossRef] [PubMed]
  14. G. Toffoli, C. Cernigoi, A. Russo, A. Gallo, M. Bagnoli, M. Boiocchi, “Overexpression of folate binding protein in ovarian cancers,” Int. J. Cancer 74, 193–198 (1997). [CrossRef] [PubMed]
  15. P. Garin-Chesa, I. Campbell, P. E. Saigo, J. L. Lewis, L. J. Old, W. J. Rettig, “Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein,” Am. J. Pathol. 142, 557–567 (1993).
  16. T. A. Patrick, D. M. Kranz, T. A. van Dyke, E. Roy, “Folate receptors as potential therapeutic targets in choroid plexus tumors of SV40 transgenic mice,” J. Neuro-Oncol. 32, 111–123 (1997). [CrossRef]
  17. W. J. Rettig, C. Cordon-Cardo, J. P. Koulos, J. L. Lewis, H. F. Oettgen, L. J. Old, “Cell surface antigens of human trophoblast and choriocarcinoma defined by monoclonal antibodies,” Int. J. Cancer 35, 469–475 (1985). [CrossRef] [PubMed]
  18. W. A. Franklin, M. Waintrub, D. Edwards, K. Christensen, P. Prendegrast, J. Woods, P. A. Bunn, J. F. Kolhouse, “New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma,” Int. J. Cancer Suppl. 8, 89–95 (1994). [CrossRef] [PubMed]
  19. J. Selhub, W. A. Franklin, “The folate-binding protein of rat kidney. Purification, properties, and cellular distribution,” J. Biol. Chem. 259, 6601–6606 (1984). [PubMed]
  20. M. D. Kennedy, K. Jallad, J. Lu, P. S. Low, D. Ben-Amotz, “Evaluation of folate conjugate uptake and transport by the choroid plexus of mice,” Pharm. Res. 20, 714–719 (2003). [CrossRef] [PubMed]
  21. S. D. Weitman, K. M. Frazier, B. A. Kamen, “The folate receptor in central nervous system malignancies of childhood,” J. Neuro-Oncol. 21, 107–112 (1994). [CrossRef]
  22. C. J. Mathias, S. Wang, R. J. Lee, D. J. Waters, P. S. Low, M. A. Green, “Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate,” J. Nucl. Med. 37, 1003–1008 (1996). [PubMed]
  23. S. D. Konda, M. Aref, M. Brechbiel, E. C. Wiener, “Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress,” Invest. Radiol. 35, 50–57 (2000). [CrossRef] [PubMed]
  24. M. D. Kennedy, K. N. Jallad, D. H. Thompson, D. Ben-Amotz, P. S. Low, “Optical imaging of metastatic tumors using a folate-targeted fluorescent probe,” J. Biomed. Opt. 8, 636–641 (2003). [CrossRef] [PubMed]
  25. C.-H. Tung, Y. Lin, W. K. Moon, R. Weissleder, “A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging,” ChemBioChem 3, 784–786 (2002). [CrossRef] [PubMed]
  26. A. J. Devaney, G. A. Tsihrintzis, “Maximum likelihood estimation of object location in diffraction tomography,” IEEE Trans. Signal Process. 39, 672–682 (1991). [CrossRef]
  27. J. C. Ye, Y. Bresler, P. Moulin, “Cramér–Rao bounds for 2-D target shape estimation in nonlinear inverse scattering problems with application to passive radar,” IEEE Trans. Antennas Propag. 49, 771–783 (2001). [CrossRef]
  28. G. Boverman, “Modeling and nonlinear inversion for frequency domain diffuse optical tomography,” Master’s thesis (Northeastern University, Boston, Mass., 2003).
  29. E. L. Miller, A. S. Willsky, “Multiscale, statistical anomaly detection analysis and algorithms for linearized inverse scattering problems,” Multidimens. Syst. Signal Process. 8, 151–184 (1995). [CrossRef]
  30. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46, 2227–2237 (2001). [CrossRef] [PubMed]
  31. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol. 44, 967–981 (1999). [CrossRef] [PubMed]
  32. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  33. J. J. Duderstadt, L. J. Hamilton, Nuclear Reactor Analysis (Wiley, New York, 1976).
  34. M. S. Patterson, B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963–1974 (1994). [CrossRef] [PubMed]
  35. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, C. L. Hutchinson, “Fluorescence and absorption contrast mechanisms for biomedical optical imaging using frequency-domain techniques,” Photochem. Photobiol. 66, 55–64 (1997). [CrossRef] [PubMed]
  36. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252–2259 (1997). [CrossRef] [PubMed]
  37. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 1.
  38. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, B. J. Tromberg, “Boundary conditions for the diffusion equation in radiative transfer,” J. Opt. Soc. Am. A 11, 2727–2741 (1994). [CrossRef]
  39. K. J. Webb, A. B. Milstein, M. D. Kennedy, K. N. Jallad, C. A. Bouman, D. Ben-Amotz, P. S. Low, “Folate conjugate fluorescence labeling for tumor localization,” in Third Inter-Institute Workshop on Diagnostic Optical Imaging and Spectroscopy: The Clinical Adventure (National Institutes of Health, Bethesda, Md., 2002).
  40. J. C. Ye, K. J. Webb, C. A. Bouman, R. P. Millane, “Optical diffusion tomography using iterative coordinate descent optimization in a Bayesian framework,” J. Opt. Soc. Am. A 16, 2400–2412 (1999). [CrossRef]
  41. J. C. Ye, C. A. Bouman, K. J. Webb, R. P. Millane, “Nonlinear multigrid algorithms for Bayesian optical diffusion tomography,” IEEE Trans. Image Process. 10, 909–922 (2001). [CrossRef]
  42. H. L. van Trees, Detection, Estimation, and Modulation Theory (Wiley, New York, 1968), Part I.
  43. L. L. Scharf, Statistical Signal Processing: Detection, Estimation, and Time Series Analysis (Addison-Wesley, New York, 1990).
  44. J. Luo, M. Smith, D. A. Lantrip, S. Wang, P. L. Fuchs, “Efficient synthesis of pyrofolic acid and pteroyl A azide, reagents for the production of carboxyl differentiated derivatives of folic acid,” J. Am. Chem. Soc. 119, 10004–10013 (1997). [CrossRef]
  45. S. Achilefu, R. Dorshow, J. Bugaj, R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol. 35, 479–485 (2000). [CrossRef] [PubMed]
  46. G. Wagnières, S. Cheng, M. Zellweger, N. Utke, D. Braichotte, J. Ballini, H. van der Bergh, “An optical phantom with tissue-like properties in the visible for use in PDT and fluorescence spectroscopy,” Phys. Med. Biol. 42, 1415–1426 (1997). [CrossRef] [PubMed]
  47. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]
  48. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991). [CrossRef] [PubMed]
  49. A. D. Gift, J. Ma, K. S. Haber, B. L. McClain, D. Ben-Amotz, “Near-infrared Raman imaging microscope based on fiber-bundle image compression,” J. Raman Spectrosc. 30, 757–765 (1999). [CrossRef]
  50. B. L. McClain, H. G. Hedderich, A. D. Gift, D. Zhang, K. N. Jallad, K. S. Haber, J. Ma, D. Ben-Amotz, “Fast chemical imaging: a rapid, noninvasive tool for medical, materials, and process analyses,” Spectroscopy 15, 28–37 (2000).
  51. M. G. Erickson, J. S. Reynolds, K. J. Webb, “Comparison of sensitivity for single and dual interfering source configurations in optical diffusion imaging,” J. Opt. Soc. Am. A 14, 3083–3092 (1997). [CrossRef]
  52. R. B. Schulz, J. Ripoll, V. Ntziachristos, “Experimental fluorescence tomography of tissues with noncontact measurements,” IEEE Trans. Med. Imaging 23, 492–500 (2004). [CrossRef] [PubMed]
  53. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, “Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement,” Proc. Natl. Acad. Sci. USA 97, 2767–2772 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited