OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2318–2326

Prediction of light-transmission losses in plastic optical fibers

Murat Tekelioglu and Byard D. Wood  »View Author Affiliations

Applied Optics, Vol. 44, Issue 12, pp. 2318-2326 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (169 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A theoretical expression is derived, based on a geometrical optics approach, with which to predict light-transmission losses in multimode plastic optical fibers for office or home lighting. Two types of optical ray arrangement, meridional ray and skew ray, are evaluated, and five loss mechanisms are identified and considered. The meridional arrangement results in a lower overall loss of light than the skew ray arrangement. The theoretical results were compared with experimental measurements taken for a 0.5-cm-diameter polymer optical fiber. For optical rays entering the fiber at incident angles of less than 20°, the theoretical results are in good agreement with the empirical results.

© 2005 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(220.2740) Optical design and fabrication : Geometric optical design
(230.7370) Optical devices : Waveguides

Original Manuscript: August 6, 2004
Revised Manuscript: November 22, 2004
Manuscript Accepted: November 26, 2004
Published: April 20, 2005

Murat Tekelioglu and Byard D. Wood, "Prediction of light-transmission losses in plastic optical fibers," Appl. Opt. 44, 2318-2326 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. R. Cates, S. L. Jaiswal, L. C. Maxey, D. D. Earl, “Characterization of transmission properties of 3M LF120C plastic optical light guide,” in Proceedings of International Solar Energy Conference—ISEC, M. D. Thornbloom, S. A. Jones, eds. (American Society of Mechanical Engineers, New York, 2003), paper 44016.
  2. W. J. Cassarly, J. M. Davenport, “Advances in fiber optics: fiber applications move into the mainstream,” in Proceedings of 8th International Symposium on the Science and Technology of Light Sources LS-8 (Institute For Low Temperature Plasma Physics, Greifswald, Germany, 1998), pp. 61–69.
  3. J. Zubia, J. Arrue, “Plastic optical fibers: an introduction to their technological processes and applications,” Opt. Fiber Technol. 7, 101–140 (2001). [CrossRef]
  4. O. V. Kolninov, I. P. Shelukhov, E. R. Klinshpont, Z. N. Lavrova, A. M. Baran, V. M. Levin, “Effect of naphthalene additive on the radiation degradation of polymethylmethacrylate,” Radiat. Phys. Chem. 46, 843–846 (1995). [CrossRef]
  5. Y. Takezawa, N. Taketani, S. Tanno, S. Ohara, “Light absorption due to higher harmonics of molecular vibrations in transparent amorphous polymers for plastic optical fibers,” J. Polym. Sci. Part B Polym. Phys. 30, 879–885 (1992). [CrossRef]
  6. H. Liu, P. Yager, “Modeling of optical bending losses in multimode waveguides,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, D. M. Harris, eds., Proc. SPIE2396, 120–129 (1995). [CrossRef]
  7. T. Kaino, “Plastic optical fibers,” in Polymers in Optics: Physics, Chemistry, and Applications, R. A. Lessard, W. F. Frank, eds., Vol. CR63 of SPIE Critical Reviews (SPIE, Bellingham, Wash., 1996), pp. 164–187.
  8. T. L. Davenport, R. L. Hansler, T. E. Stenger, W. J. Cassarly, G. R. Allen, R. F. Buelow, “Changes in angular and spatial distribution introduced into fiber optic headlamp systems by the fiber optic cables,” in 1998 SAE International Congress and Exposition, Detroit (Society of Automotive Engineers, Warrendale, PA, 1998), pp. 1827–1836.
  9. A. Biermann, N. Narendran, N. Maliyagoda, “How to report light loss values for optical fibers used in fiber-optic lighting applications,” in Illumination and Source Engineering, A. V. Arecchi, ed., Proc. SPIE3428, 62–72 (1998). [CrossRef]
  10. H. Nagata, “Effect of heating on jacketed optical fibers,” Opt. Fiber Technol. 6, 192–198 (2000). [CrossRef]
  11. Y. Takezawa, S. Tanno, N. Taketani, S. Ohara, H. Asano, “Analysis of thermal degradation for plastic optical fibers,” J. Appl. Polym. Sci. 42, 2811–2817 (1991). [CrossRef]
  12. S. Tsao, W. Cheng, “Simplified formula of bending loss for optical fiber sensors,” Fiber Integr. Opt. 21, 333–344 (2002). [CrossRef]
  13. J. T. Remillard, M. P. Everson, W. H. Weber, “Loss mechanisms in optical light pipes,” Appl. Opt. 31, 7232–7241 (1992). [CrossRef] [PubMed]
  14. T. Ishigure, M. Sato, A. Kondo, Y. Tsukimori, Y. Koike, “Graded-index polymer optical fiber with high temperature and high humidity stability,” J. Lightwave Technol. 20, 1818–1825 (2002). [CrossRef]
  15. T. Ishigure, H. Endo, K. Ohdoko, Y. Koike, “High-bandwidth plastic optical fiber with w-refractive index profile,” IEEE Photon. Technol. Lett. 16, 2081–2083 (2004). [CrossRef]
  16. Product specification web catalog at http://www.lumenyte.com/product/specs/Ffiber[1].HTM .
  17. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Macmillan, New York, 1963).
  18. J. C. Stover, Optical Scattering: Measurement and Analysis (McGraw-Hill, New York, 1990).
  19. F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, T. Limperis, Geometrical Considerations and Nomenclature for Reflectance (U.S. Government Printing Office, Washington, D.C., 1977).
  20. M. F. Modest, “Fundamentals of thermal radiation” and “Radiative properties of real surfaces,” in Radiative Heat Transfer, J. J. Corrigan, J. M. Morris, eds. (McGraw-Hill, New York, 1993), Chap. 1, p. 7;Radiative Heat TransferChap. 3, p. 88.
  21. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113, 195–287 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited