OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2349–2358

Determination of the size and structure of an X-pinch x-ray source from the diffraction pattern produced by microfabricated slits

Byung Moo Song, Sergei A. Pikuz, Tatiania A. Shelkovenko, and David A. Hammer  »View Author Affiliations


Applied Optics, Vol. 44, Issue 12, pp. 2349-2358 (2005)
http://dx.doi.org/10.1364/AO.44.002349


View Full Text Article

Enhanced HTML    Acrobat PDF (1750 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

X-pinch plasma emits subnanosecond bursts of x rays in the 3–10-keV energy range from a small source. As such, it has been used for high-resolution point-projection imaging of small, dense, rapidly changing plasmas as well as for submillimeter-thick biological samples. In addition to the effect of source size on geometric resolution, a small source size can also provide high spatial coherence of x rays, enabling the rays to be used for imaging weakly absorbing objects with excellent spatial resolution by a method called phase-contrast imaging. To determine the source size, we microfabricated gold slits and imaged them in a point-projection radiography configuration. The shape of the shadow image pattern depends on the source size and energy band of the x rays, the shape and material used for the slits, and the geometry of the experiment. Experimental results have been compared with wave-optics calculations of the expected image pattern as a function of all the parameters listed above. For example, assuming a Gaussian source distribution, an effective source size in 2.5–4.1 Å radiation (1 Å = 0.1 nm) of 1.2 ± 0.5 µm (full width at half-maximum) was determined for a 20-µm Mo wire X pinch. Characterization of the size and structure of the x-ray bursts from X pinches by the use of different wire materials and different slit structures is made.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction

History
Original Manuscript: June 3, 2004
Revised Manuscript: November 19, 2004
Manuscript Accepted: November 19, 2004
Published: April 20, 2005

Citation
Byung Moo Song, Sergei A. Pikuz, Tatiania A. Shelkovenko, and David A. Hammer, "Determination of the size and structure of an X-pinch x-ray source from the diffraction pattern produced by microfabricated slits," Appl. Opt. 44, 2349-2358 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-12-2349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Zakharov, G. V. Ivanenkov, A. A. Kolomanskii, A. I. Samokhin, J. Ullschmied, “Wire x-pinch in a high-current diode,” Sov. Tech. Phys. Lett. 8, 456–457 (1982).
  2. D. H. Kalantar, “An experimental study of the dynamics of x-pinch and z-pinch plasmas,” Ph.D. dissertation (Cornell University, Ithaca, New York, 1993).
  3. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, K. M. Chandler, D. A. Hammer, “Point-projection x-ray radiograph using an X pinch as the radiation source,” Rev. Sci. Instrum. 72, 667–670 (2001). [CrossRef]
  4. T. A. Shelkovenko, D. B. Sinars, S. A. Pikuz, D. A. Hammer, “Radiographic and spectroscopic studies of X-pinch plasma implosion dynamics and x-ray burst emission characteristics,” Phys. Plasmas 8, 1305–1318 (2001). [CrossRef]
  5. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard x-rays,” Nature 373, 595–598 (1995). [CrossRef]
  6. P. Cloetens, R. Barrett, J. Baruchel, J. P. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D 29, 133–146 (1996). [CrossRef]
  7. S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, A. W. Stevenson, “Phase-contrast imaging using polychromatic hard x-rays,” Nature 384, 3406–3408 (1996). [CrossRef]
  8. A. Momose, T. Takeda, A. Yoneyama, I. Koyama, Y. Itai, “Phase-contrast x-ray imaging using an x-ray interferometer for biological imaging,” Anal. Sci. 17, 527–530 (2001).
  9. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, K. M. Chandler, D. A. Hammer, “Phase-contrast x-ray radiography using X pinch radiation,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J.-C. J. Gauthier, eds., Proc. SPIE4504, 234–239 (2001). [CrossRef]
  10. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, D. A. Hammer, “Small size X pinch radiation source for application to phase-contrast x ray radiography of biological specimens,” IEEE Nuclear Science Medical Imaging Conference (NSS/MIC) Record (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 2002), pp. 868–872.
  11. G. Margaritondo, G. Tromba, “Coherence-based edge diffraction sharpening of x-ray images: a simple model,” J. Appl. Phys. 85, 3406–3408 (1999). [CrossRef]
  12. S. A. Pikuz, B. M. Song, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “X pinch source size measurements,” in Laser-Generated and Other Laboratory X-Ray and EUV Sources, Optics, and Applications, G. A. Kyrala, J.-C. J. Gauthier, C. A. MacDonald, A. M. Khoodsary, eds., Proc. SPIE5196, 25–35 (2004).
  13. B. Henke, H. Yamada, T. Tanaka, “Pulsed plasma source spectrometry in the 80–8000-eV x-ray region,” Rev. Sci. Instrum. 54, 1311–1330 (1983). [CrossRef]
  14. T. A. Shelkovenko, S. A. Pikuz, D. B. Sinars, K. M. Chandler, D. A. Hammer, “X pinch plasma development as a function of wire material and current pulse parameters,” IEEE Trans. Plasma Sci. 30, 567–576 (2002). [CrossRef]
  15. M. L. Schattenburg, R. J. Aucoin, R. C. Fleming, “Optically matched trilevel resist process for nanostructure fabrication,” J. Vac. Sci. Technol. B. 13, 3007–3011 (1995). [CrossRef]
  16. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, D. A. Hammer, “Focussing x-ray spectrograph with crossed dispersion,” Rev. Sci. Instrum. 74, 1954–1957 (2003). [CrossRef]
  17. T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, G. V. Ivanenkov, B. M. Song, K. M. Chandler, M. Mitchell, D. A. Hammer, “X pinch source characteristics for x-rays above 10 keV,” in Proc. SPIE 5196, 36–44 (2004). [CrossRef]
  18. B. M. Song, S. A. Pikuz, T. A. Shelkovenko, K. M. Chandler, M. D. Mitchell, D. A. Hammer, “X pinch x-ray radiation above 8 keV for application to high-resolution radiography of biological specimens,” IEEE Trans. Nucl. Sci. 51, 2514–2519 (2004). [CrossRef]
  19. J. Cowley, Diffraction Physics (Cambridge U. Press, Cambridge, 1966).
  20. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995). [CrossRef]
  21. M. Born, E. Wolf, Principles of Optics, 4th ed. (Pergamon, London, 1970).
  22. V. Kohn, I. Snigireva, A. Snigirev, “Direct measurement of transverse coherence length of hard x rays from interference fringes,” Phys. Rev. Lett. 85, 2745–2748 (2000). [CrossRef] [PubMed]
  23. D. H. Kalantar, D. A. Hammer, “Observation of a stable dense core within an unstable coronal plasma in wire-initiated dense Z-pinch experiments,” Phys. Rev. Lett. 71, 3806–3809 (1993). [CrossRef] [PubMed]
  24. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, D. A. Hammer, S. V. Lebedev, S. N. Bland, Yu. Skobelev, J. Abdallah, C. J. Fontes, H. L. Zhang, “Spatial, temporal, and spectral characteristics of an X pinch,” J. Quant. Spectrosc. Radiat. Transfer 71, 581–594 (2001). [CrossRef]
  25. G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Experimental study of X-pinch dynamics,” Phys. Plasmas 22, 363–378 (1996).
  26. B. Song, “High resolution radiography using X-pinch x-ray sources,” Ph.D. dissertation (Cornell University, Ithaca, New York, 2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited