OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2391–2395

Dispersion characteristics of segmented optical fibers

Vitor Marino Schneider and Haroldo Takashi Hattori  »View Author Affiliations


Applied Optics, Vol. 44, Issue 12, pp. 2391-2395 (2005)
http://dx.doi.org/10.1364/AO.44.002391


View Full Text Article

Acrobat PDF (186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A direct scalar two-dimensional routine based on the method of lines is implemented to analyze the dispersion characteristics of segmented fibers. In this kind of structure, dispersion control in a simple profile is achieved by variations in the filling ratio of the coaxiallike structure.

© 2005 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(260.2030) Physical optics : Dispersion

Citation
Vitor Marino Schneider and Haroldo Takashi Hattori, "Dispersion characteristics of segmented optical fibers," Appl. Opt. 44, 2391-2395 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-12-2391


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. D. Marcuse, A. R. Chraplyvy, and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission," J. Lightwave Technol. 9, 121-128 (1991).
  2. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: a new class of optical waveguides," Opt. Fiber Technol. 5, 305-330 (1999).
  3. V. V. Ravi Kanth Kumar, A. K. George, W. H. Reeves, J. C. Knight, P. St. J. Russell, F. G. Omenetto, and A. J. Taylor, "Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation," Opt. Express 10, 1520-1525 (2002), http://www.opticsexpress.org.
  4. J. Canning, E. Buckley, K. Lyttikainen, and T. Ryan, "Wavelength dependent leakage in a Fresnel-based air-silica structure optical fiber," Opt. Commun. 205, 95-99 (2002).
  5. M. Hisatomi, M. C. Parker, and S. D. Walker, "Zone microstructure fiber for low-dispersion waveguides and coupling to photonic crystals," Opt. Lett. 29, 1054-1056 (2004).
  6. U. Rogge and R. Pregla, "Method of lines for the analysis of trip-loaded optical waveguides," J. Opt. Soc. Am. B 8, 459-463 (1991).
  7. V. M. Schneider and J. A. West, "Analysis of wideband dispersion slope compensating optical fibers by supermode theory," Electron. Lett. 38, 306-307 (2002).
  8. J. L. Auguste, R. Jindal, J. M. Blondy, M. Chapeau, J. Marcou, B. Dussandler, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, "1800 ps/(nm/km) chromatic dispersion at 1.55 µm in dual concentric fiber," Electron. Lett. 36, 1689-1690 (2000).
  9. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
  10. V. M. Schneider, "Analysis of passive optical structures with an adaptive set of radiation modes," Opt. Commun. 160, 230-234 (1999).
  11. J. W. Fleming, "Material dispersion in lightguide glasses," Electron. Lett. 14, 326-328 (1978).
  12. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited