OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2409–2415

Fabrication of compact turning mirrors in silicon-on-insulator materials

Wenhui Wang, Yanzhe Tang, Tie Li, Yaming Wu, Jianyi Yang, and Yuelin Wang  »View Author Affiliations

Applied Optics, Vol. 44, Issue 12, pp. 2409-2415 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (627 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A turning mirror is a key component in compact optical waveguide devices and high-density integrated optics. An improved two-step method for fabrication of high-quality, compact turning mirrors in silicon-on-insulator materials is proposed. First, inductively coupled plasma etching is applied to produce the turning mirror, which keeps the turning mirror compact; then silicon wet anisotropic etching is applied to enhance the quality of the turning mirror by of its polishing surface, correcting its orientation, and improving the verticality. The shape of the turning mirror fabricated by the two-step method is hexagonal or octagonal, matching the optical field of the rib waveguide well. A large effective mirror size to reflect light waves and reduced shrinkage of the mirror size during etching guarantee that a mirror produced by this two-step method will be more compact than previously designed mirrors.

© 2005 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.5990) Integrated optics : Semiconductors
(230.4000) Optical devices : Microstructure fabrication
(230.4040) Optical devices : Mirrors
(230.7370) Optical devices : Waveguides

Original Manuscript: June 23, 2004
Revised Manuscript: November 3, 2004
Manuscript Accepted: November 8, 2004
Published: April 20, 2005

Wenhui Wang, Yanzhe Tang, Tie Li, Yaming Wu, Jianyi Yang, and Yuelin Wang, "Fabrication of compact turning mirrors in silicon-on-insulator materials," Appl. Opt. 44, 2409-2415 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Soref, J. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 µm integrated-optical components,” Electron. Lett. 21, 953–954 (1985). [CrossRef]
  2. P. Trinh, S. Yegnanarayanan, F. Coppinger, B. Jalali, “Silicon-on-insulator phased-array wavelength multi/demultiplexer with extremely low-polarization sensitivity,” IEEE Photon. Technol. Lett. 9, 740–942 (1997). [CrossRef]
  3. X. Jiang, B. Li, Y. Tang, J. Yang, M. Wang, W. Wang, Y. Yang, Y. Wu, Y. Wang, “Design and fabrication of the star coupler based on SOI material,” Chin. Opt. Lett. 1, 465–467 (2003).
  4. R. Espinola, M. Tsai, J. Yardley, R. Osgood, “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15, 1366–1368 (2003). [CrossRef]
  5. Y. Sun, X. Jiang, J. Yang, Y. Tang, M. Wang, “Experimental demonstration of 2-D MMI optical power splitter,” Chin. Phys. Lett. 20, 2182–2184 (2003). [CrossRef]
  6. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef] [PubMed]
  7. W. Wang, Y. Tang, Y. Wang, H. Qu, Y. Wu, T. Li, J. Yang, Y. Wang, M. Liu, “Etched-diffraction-grating-based planar waveguide demultiplexer on silicon-on-insulator,” Opt. Quantum Electron. 36, 559–566 (2004). [CrossRef]
  8. K. Jia, W. Wang, Y. Tang, Y. Yang, J. Yang, X. Jiang, Y. Wu, M. Wang, Y. Wang, “Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating,” IEEE Photon. Technol. Lett. 17, 378–380 (2005). [CrossRef]
  9. R. Soref, “Silicon-based optoelectronics,” Proc. IEEE 81, 1687–1706 (1993). [CrossRef]
  10. E. Marcatili, “Bends in optical dielectric waveguides,” Bell Syst. Tech. J. 48, 2103–2132 (1969). [CrossRef]
  11. C. Rolland, G. Mak, K. Fox, D. Adams, A. Springthorpe, D. Yevick, B. Hermansson, “Analysis of strongly-guiding rib waveguide S-bends: theory and experiment,” Electron. Lett. 25, 1256–1257 (1989). [CrossRef]
  12. R. Soref, J. Schmidtchen, K. Petermann, “Large single-mode rib waveguides in GeSi–Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27, 1971–1974 (1991). [CrossRef]
  13. S. P. Pogossian, L. Vescan, A. Vonsovici, “The single-mode condition for semiconductor rib waveguides with large cross section,” J. Lightwave Technol. 16, 1851–1853 (1998). [CrossRef]
  14. P. Buchmann, H. Kaufmann, “GaAs single-mode rib waveguides with reactive ion-etched totally reflecting corner mirrors,” J. Lightwave Technol. 3, 785–788 (1985). [CrossRef]
  15. Y. Chung, N. Dagli, “Experimental and theoretical study of turning mirrors and beam splitters with optimized waveguide structures,” Opt. Quantum Electron. 27, 395–403 (1995). [CrossRef]
  16. L. Faustini, C. Coriasso, A. Stano, C. Cacciatore, D. Campi, “Loss analysis and interference effect in semiconductor integrated waveguide turning mirrors,” IEEE Photon. Technol. Lett. 8, 1355–1357 (1996). [CrossRef]
  17. R. Ahmad, F. Pizzuto, G. Gamara, R. Espinola, H. Rao, R. Osgood, “Ultracompact corner-mirrors and T-branches in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 65–67 (2002). [CrossRef]
  18. Y. Tang, W. Wang, T. Li, Y. Wang, “Integrated waveguide turning mirror in silicon-on-insulator,” IEEE Photon. Technol. Lett. 14, 68–70 (2002). [CrossRef]
  19. N. Maluf, An Introduction to Microelectromechanical System Engineering (Artech House, Boston, Mass., 2000).
  20. S. Chuang, J. Kong, “Scattering of waves from periodic surfaces,” Proc. IEEE 69, 1132–1144 (1984). [CrossRef]
  21. A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Boston, Mass., 2000).
  22. S. M. Lee, W. C. Chew, M. Moghaddam, M. A. Nasir, S. Chuang, R. W. Herrick, C. L. Balestra, “Modeling of rough-surface effects in an optical turning mirror using the finite-difference time-domain method,” J. Lightwave Technol. 9, 1471–1479 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited