OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 12 — Apr. 20, 2005
  • pp: 2438–2455

Retrieval of vertical constituents and temperature profiles from passive submillimeter wave limb observations of the Martian atmosphere: a feasibility study

Joachim Urban, Karin Dassas, François Forget, and Philippe Ricaud  »View Author Affiliations

Applied Optics, Vol. 44, Issue 12, pp. 2438-2455 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (783 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The investigation of the Martian atmosphere is of key importance for an understanding of the planets present and past. Passive limb observations of thermal radiation at submillimeter wavelengths in the 320–350-GHz range by use of a state-of-the-art satellite receiver on a low Mars orbit allow important parameters such as the mixing ratios of H2O, HDO, 12CO, 13CO, O3, and H2O2 as well as the thermal profile to be retrieved with high precision and unprecedented vertical range and resolution, providing valuable information for better understanding of the planet’s water cycle, atmospheric dynamics, and photochemistry. The feasibility of these kinds of measurement is demonstrated by means of model simulations based on realistic atmospheric, spectroscopic, and instrumental parameters. Temperature can be retrieved to ∼90 km with half-scale height vertical resolution from single-scan measurements of emission lines of the long-lived species 12CO and 13CO. The global water-vapor distribution can be measured even under dry or wet conditions with good vertical resolution from the surface to ∼45 km, and simultaneous observations of HDO allow useful information on the D/H ratio up to an altitude of ∼30 km to be derived. The sensitivity of the limb-sounding technique also permits information on the photochemically important minor species O3 and H2O2 to be obtained. It is shown that spectral averaging may improve precision, altitude range, and resolution of the retrieved profiles. Other frequency bands are explored, and the 435–465-GHz range is suggested as a possible alternative to the 320–350-GHz range.

© 2005 Optical Society of America

OCIS Codes
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(300.0300) Spectroscopy : Spectroscopy
(300.1030) Spectroscopy : Absorption
(300.2140) Spectroscopy : Emission
(300.6310) Spectroscopy : Spectroscopy, heterodyne

Original Manuscript: December 22, 2003
Revised Manuscript: August 10, 2004
Manuscript Accepted: November 30, 2004
Published: April 20, 2005

Joachim Urban, Karin Dassas, François Forget, and Philippe Ricaud, "Retrieval of vertical constituents and temperature profiles from passive submillimeter wave limb observations of the Martian atmosphere: a feasibility study," Appl. Opt. 44, 2438-2455 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. M. Haberle, J. B. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, H. Lee, J. Schaeffer, “Mars atmospheric dynamics as simulated by the NASA AMES General Circulation Model. I. The zonal-mean circulation,” J. Geophys. Res. 98, 3093–3123 (1993). [CrossRef]
  2. R. Wilson, K. Hamilton, “Comprehensive model simulation of thermal tides in the Martian atmosphere,” J. Atmos. Sci. 53, 1290–1326 (1996). [CrossRef]
  3. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S. Louis, P. Read, J.-P. Huot, “An improved general circulation model of the Martian atmosphere from the surface to above 80 km,” J. Geophys. Res. 104, 24, 155–24, 176 (1999).
  4. B. M. Jakosky, R. J. Phillips, “Mars volatile and climate history,” Nature 412, 237–244 (2001). [CrossRef] [PubMed]
  5. C. Leovy, “Weather and climate on Mars,” Nature 412, 245–249 (2001). [CrossRef] [PubMed]
  6. F. Forget, K. Dassas, M. Capderou, S. Lebonnois, G. Beaudin, A. Deschamps, P. Encrenaz, B. Germain, M. Gheudin, A. Maestrini, C. Prigent, B. Thomas, P. Ricaud, J. Urban, M. Janssen, M. Frerking, S. Gulkis, L. Riley, M. Allen, T. Encrenaz, E. Lellouch, P. Hartogh, R. Clancy, E. Chassefiere, F. Lefèvre, F. Montmessin, A. Emrich, D. Murtagh, R. Booth, U. Frisk, A. Raisanen, “Mars atmosphere microwave brightness observer,” Tech. Rep. (Laboratoire de Météorologie Dynamique, IPSL, Université de Pierre et Marie Curie, Paris (May2002).
  7. V. A. Krasnopolsky, “Mars photochemistry: weak points and search for solutions,” in Sixth International Conference on Mars (Lunar and Planetary Institute, Houston, Texas, 2003), pp. 3002–3004; http://www.lpi.usra.edu/meetings/sixthmars2003/abstractvolume.html .
  8. A. L. Albee, R. E. Arvidson, F. Palluconi, T. Thorpe, “Overview of the Mars Global Surveyor mission,” J. Geophys. Res. 106, 23291–23316 (2001). [CrossRef]
  9. P. R. Christensen, D. L. Anderson, S. C. Chase, R. T. Clancy, R. N. Clark, B. J. Conrath, H. H. Kieffer, R. O. Kuzmin, M. C. Malin, J. C. Pearl, T. L. Roush, M. D. Smith, “Results from the Mars Global Surveyor Thermal Emission Spectrometer,” Science 279, 1692–1698 (1998). [CrossRef] [PubMed]
  10. B. J. Conrath, J. C. Pearl, M. D. Smith, W. C. Maguire, P. R. Christensen, S. Dason, M. S. Kaelberer, “Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing,” J. Geophys. Res. 105, 9509–9520 (2000). [CrossRef]
  11. R. T. Clancy, B. J. Sandor, M. J. Wolff, P. R. Christensen, M. D. Smith, J. C. Pearl, B. J. Conrath, R. J. Wilson, “An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere,” J. Geophys. Res. 105, 9553–9572 (2000). [CrossRef]
  12. M. Smith, J. Pearl, C. Conrath, P. Christensen, “Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution,” J. Geophys. Res. 106, 23, 929–23, 945 (2001).
  13. E. Lellouch, J. Rosenqvist, J. J. Goldstein, S. W. Bougher, G. Paubert, “First absolute wind measurements in the middle atmosphere of Mars,” Astrophys. J. 383, 401–406 (1991). [CrossRef]
  14. M. Smith, “The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer,” J. Geophys. Res. 107, 25-1–25-19 (2002).
  15. T. Encrenaz, E. Lellouch, G. Paubert, S. Gulkis, “The water vapor vertical distribution on Mars from millimeter transitions of HDO and H2O,” Planet. Space Sci. 49, 731–741 (2001). [CrossRef]
  16. M. J. Mumma, R. E. Novak, M. A. Disanti, B. Bonev, N. dello Russo, K. Magee-Sauer, “Seasonal Mapping of HDO and H2O in the Martian atmosphere,” in Sixth International Conference on Mars (Lunar and Planetary Institute, Houston, Texas, 2003), pp. 3186–3188; http://www.lpi.usra.edu/meetings/sixthmars2003/abstractvolume.html .
  17. A. F. Chicarrothe Science Team, “The Mars Express mission and its Beagle-2 lander,” in Sixth International Conference on Mars (Lunar and Planetary Institute, Houston, Texas, 2003), pp. 3049–3051; http://www.lpi.usra.edu/meetings/sixthmars2003/abstractvolume.html .
  18. J.-L. Bertaux, D. Fonteyn, O. Korablev, E. Chassefière, E. Dimarellis, J. Dubois, A. Hauchecorne, M. Cabane, P. Rannou, A. Levasseur-Regourd, G. Cernogora, E. Quemerais, C. Hermans, G. Kockarts, C. Lippens, M. Maziere, D. Moreau, C. Muller, B. Neefs, P. Simon, F. Forget, F. Hourdin, O. Talagrand, V. Moroz, A. Rodin, B. Sandel, A. Stern, “The study of the Martian atmosphere from top to bottom with SPICAM light on Mars Express,” Planet. Space Sci. 48, 1303–1320 (2000). [CrossRef]
  19. V. Formisano, D. Grassi, N. Ignatiev, L. Zasova, A. Maturilli, “PFS for Mars Express: a new approach to study Martian atmosphere,” Adv. Space Res. 29, 131–142 (2002). [CrossRef]
  20. http://mars.jpl.nasa.gov/mro/mission/ .
  21. S. Bühler, A. von Engeln, J. Urban, J. Wohlgemuth, K. Künzi, “Investigation of sensitivity to cloud,” in Study on Upper Troposphere/Lower Stratosphere Sounding, ESA/ESTEC, 1999, W. J. Reburn, ed., ESTEC contract 12053/97/NL/CN (European Space Research and Technology Centre, Noordwijk, The Netherlands, 1999), pp. 435–569.
  22. C. Emde, S. Buehler, P. Eriksson, T. Sreerekha, “The effect of cirrus clouds on microwave limb radiances,” J. Atmos. Res. 72(1-4) 383–401 (2004), doi: . [CrossRef]
  23. M. Wolff, R. Clancy, “Constraints on the Size of Martian Aerosols from TES spectral observation,” J. Geophys. Res. 108(E9) 1-1–1-23 (2003), doi: . [CrossRef]
  24. R. Clancy, M. Wolff, P. Christensen, “Mars Aerosol Studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude,” J. Geophys. Res. 108(E9) 2-1–2-20 (2003), doi: . [CrossRef]
  25. M. A. Lopez-Valverde, M. Lopez-Puertas, “A non-local thermodynamic equilibrium radiative transfer model for infrared emissions in the atmosphere of Mars. 1. Theoretical basis and nighttime populations of vibrational levels,” J. Geophys. Res. 99, 13,093–13,115 (1994). [CrossRef]
  26. J. E. Waters, “An overview of the EOS MLS experiment,” Tech. Rep. JPL D-15745 (Jet Propulsion Laboratory, Pasadena, Calif., 1999), http://mls.jpl.nasa.gov/ (January151999).
  27. G. Melnick, J. Stauffer, M. Ashby, E. Bergin, G. Chin, N. Erickson, P. Goldsmith, M. Harwit, J. Howe, S. Kleiner, D. Koch, D. Neufeld, B. Patten, R. Plume, R. Schieder, R. Snell, V. Tolls, Z. Wang, G. Winnewisser, Y. Zhang, “The Submillimeter Wave Astronomy Satellite: science objectives and instrument description,” Astrophys. J. 539, L77–L85 (2000). [CrossRef]
  28. U. Frisk, M. Hagström, J. Ala-Laurinaho, S. Andersson, J.-C. Berges, J.-P. Chabaud, M. Dahlgren, A. Emrich, H.-G. Florén, G. Florin, M. Fredrixon, T. Gaier, R. Haas, T. Hirvonen, A. Hjalmarsson, B. Jakobsson, P. Jukkala, P. Kildal, E. Kollberg, J. Lassing, A. Lecacheux, P. Lehikoinen, A. Lehto, J. Mallat, C. Marty, D. Michet, J. Narbonne, M. Nexon, M. Olberg, O. Olofsson, G. Olofsson, A. Origné, M. Petersson, P. Piironen, R. Pons, D. Pouliquen, I. Ristocelli, C. Rosolen, G. Rouaix, A. Räisänen, G. Serra, F. Sjöberg, L. Stenmark, S. Torchinsky, J. Tuovinen, C. Ullberg, E. Vinterhav, N. Wadefalk, H. Zirath, P. Zimmermann, R. Zimmermann, “The Odin satellite. I. Radiometer design and test,” Astron. Astrophys. 402, L27–L34 (2003). [CrossRef]
  29. T. Owen, J. P. Maillard, C. de Bergh, B. L. Lutz, “Deuterium on Mars—the abundance of HDO and the value of D/H,” Science 240, 1767–1770 (1988). [CrossRef]
  30. V. A. Krasnopolsky, G. L. Bjoraker, M. J. Mumma, D. E. Jennings, “High-resolution spectroscopy of Mars at 3.7 and 8 µm: a sensitive search of H2O2, H2CO, HCl, and CH4, and detection of HDO,” J. Geophys. Res. 102, 6525–6534 (1997). [CrossRef]
  31. T. Fouchet, E. Lellouch, “Vapor pressure isotope fractionation effects in planetary atmospheres: application to deuterium,” Icarus 144, 114–123 (2000). [CrossRef]
  32. J. Bertaux, F. Montmessin, “Isotopic fractionation through water vapor condensation: the deuteropause, a cold trap for deuterium in the atmosphere of Mars,” J. Geophys. Res. 106, 32,879–32,884 (2001). [CrossRef]
  33. E. Lellouch, G. Paubert, T. Encrenaz, “Mapping of CO millimeter-wave lines in Mars’ atmosphere—the spatial variability of carbon monoxide on Mars,” Planet. Space Sci. 39, 219–224 (1991). [CrossRef]
  34. M. McElroy, J. Mcdonnell, “Dissociation of CO2 in the Martian atmosphere,” J. Atmos. Sci. 28, 879–884 (1972). [CrossRef]
  35. M. A. Bullock, C. R. Stoker, C. P. McKay, A. P. Zent, “A coupled soil-atmosphere model of H2O2 on Mars,” Icarus 107, 142–154 (1994). [CrossRef] [PubMed]
  36. R. T. Clancy, H. Nair, “Annual (perihelion–aphelion) cycles in the photochemical behavior of the global Mars atmosphere,” J. Geophys. Res. 101, 12,785–12,790 (1996). [CrossRef]
  37. J. Urban, D. Lamarre, “Investigation of instrumental parameters,” in The Retrieval of Data from Sub-Millimetre Limb Sounding - CCN2, ESTEC contract 11979/97/NL/CN-CCN2, (European Space Research and Technology Centre, Noordwijk, The Netherlands, 2000), Chap. 3, pp. 149–209.
  38. J. Urban, P. Baron, N. Lautié, K. Dassas, N. Schneider, P. Ricaud, J. de La Noë, “MOLIERE (v5): a versatile forward-and inversion model for the millimeter and sub-millimeter wavelength range,” J. Quant. Spectrosc. Radiat. Transfer 83, 529–554 (2004). [CrossRef]
  39. C. Melsheimer, C. Verdes, S. Buehler, C. Emde, P. Eriksson, D. Feist, S. Ichizawa, V. John, Y. Kasai, G. Kopp, N. Koulev, T. Kuhn, O. Lemke, S. Ochiai, F. Schreier, T. Sreerekha, M. Suzuki, C. Takahashi, S. Tsujimaru, J. Urban, “Intercomparison of general purpose clear-sky atmospheric radiative transfer models for the millimeter/sub-millimeter spectral range,” Radio Sci. 40, R51007, doi: (2005). [CrossRef]
  40. S. Clough, F. Kneizys, R. Davies, “Line shape and the water vapor continuum,” Atmos. Res. 23, 229–241 (1989). [CrossRef]
  41. P. Rosenkranz, “Absorption of microwaves by atmospheric gases,” in Atmospheric Remote Sensing by Microwave Radiometry, M. A. Janssen, ed., Wiley Series in Remote Sensing (Wiley, New York, 1993), Chap. 2, pp. 37–82.
  42. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  43. P. Eriksson, “Microwave radiometric observations of the middle atmosphere: simulations and inversions,” Ph.D. dissertation (Chalmers University of Technology, Göteburg, Sweden, 1999).
  44. http://www.rss.chalmers.se/gem/research/verdandi.html .
  45. H. Pickett, R. Poynter, E. Cohen, M. Delitsky, J. Pearson, H. Müller, “Submillimeter, millimeter, and microwave spectral line catalog,” J. Quant. Spectrosc. Radiat. Transfer 60, 883–890 (1998). [CrossRef]
  46. L. Rothman, A. Barbe, D. Benner, L. Brown, C. Camy-Peyret, M. Carleer, K. Chance, C. Clerbaux, V. Dana, V. Devi, A. Fayr, J.-M. Flaud, R. Gamache, A. Goldman, D. Jaquemart, K. Jucks, W. Lafferty, J.-Y. Mandin, S. Massie, V. Nemtchinov, D. Newnham, A. Perrin, C. Rinsland, J. Schroeder, K. Smith, M. Smith, K. Tang, R. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN Molecular Spectroscopic Database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]
  47. D. Priem, F. Rohart, J.-M. Colmont, G. Wlodarcsak, J. Bouanich, “Lineshape study of the J = 3–2 rotational transition of CO perturbed by N2 and O2,” J. Mol. Struct. 517–518435–454 (2000). [CrossRef]
  48. P. Varanasi, J. Tegwani, “Half width calculations for CO lines broadened by CO2,” J. Quant. Spectrosc. Radiat. Transfer 11, 255–261 (1971). [CrossRef]
  49. D. Muhleman, R. Clancy, “Microwave spectroscopy of the Mars atmosphere,” Appl. Opt. 34, 6067–6080 (1995). [CrossRef] [PubMed]
  50. T. Encrenaz, A. Coradini, G. Beaudin, J. Crovisier, P. Drossart, S. Erard, B. Germain, S. Gulkis, Y. Langevin, E. Lellouch, “The Mars flyby of ROSETTA: an opportunity for infrared and microwave high-resolution sounding,” Planet. Space Sci. 49, 673–687 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited