OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 13 — May. 1, 2005
  • pp: 2471–2481

Fundamental characteristics of a synthesized light source for optical coherence tomography

Manabu Sato, Ichiro Wakaki, Yuuki Watanabe, and Naohiro Tanno  »View Author Affiliations

Applied Optics, Vol. 44, Issue 13, pp. 2471-2481 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1941 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 µm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 µm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 µm. The lateral resolution was measured at less than 4.4 µm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.

© 2005 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(110.1650) Imaging systems : Coherence imaging
(110.4500) Imaging systems : Optical coherence tomography
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation

Original Manuscript: February 25, 2004
Revised Manuscript: November 15, 2004
Manuscript Accepted: November 16, 2004
Published: May 1, 2005

Manabu Sato, Ichiro Wakaki, Yuuki Watanabe, and Naohiro Tanno, "Fundamental characteristics of a synthesized light source for optical coherence tomography," Appl. Opt. 44, 2471-2481 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. G. Podoleanu, J. A. Rogers, D. A. Jackson, “OCT en-face images from the retina with adjustable depth resolution in real time,” IEEE J. Sel. Top. Quantum Electron. 5, 1176–1184 (1999). [CrossRef]
  3. A. M. Rollins, R. Ung-arunyawee, A. Chak, R. C. K. Wong, K. Kobayashi, M. V. Sivak, J. A. Izatt, “Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design,” Opt. Lett. 24, 1358–1360 (1999). [CrossRef]
  4. M. Ohmi, Y. Ohnishi, K. Yoden, M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by low coherence interferometry,” IEEE Trans. Biomed. Eng. 47, 1266–1270 (2000). [CrossRef] [PubMed]
  5. A. Dubois, L. Vabre, A. Boccara, E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002). [CrossRef] [PubMed]
  6. W. Drexler, U. Morgener, F. X. Kärtener, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999). [CrossRef]
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002). [CrossRef]
  8. A. Mussot, T. Sylveatre, L. Provino, H. Maillotte, “Generation of a broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanosecond microchip laser,” Opt. Lett. 28, 1820–1822 (2003). [CrossRef] [PubMed]
  9. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, H. Pehamberger, “Compact, broad-bandwidth fiber laser for sub-2-m axial resolution optical coherence tomography in the 1300-nm wavelength region,” Opt. Lett. 28, 707–709 (2003). [CrossRef] [PubMed]
  10. B. Laude, A. D. Martino, B. Drevillon, L. Benattar, L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002). [CrossRef] [PubMed]
  11. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408 (2002). [CrossRef]
  12. A. C. Akcay, J. P. Rolland, J. M. Eichenholz, “Spectral shaping to improve the point spread function in optical coherence tomography,” Opt. Lett. 28, 1921–1923 (2003). [CrossRef] [PubMed]
  13. Y. J. Rao, Y. N. Ning, D. A. Jackson, “Synthesized source for white-light sensing systems,” Opt. Lett. 18, 462–464 (1993). [CrossRef] [PubMed]
  14. J. M. Schmitt, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun. 142, 203–207 (1997). [CrossRef]
  15. Y. Zhang, M. Sato, N. Tanno, “Resolution improvement in optical coherence tomography by optical synthesis of light-emitting diodes,” Opt. Lett. 26, 205–207 (2001). [CrossRef]
  16. Y. Zhang, M. Sato, N. Tanno, “Numerical investigations of optimal synthesis of several low coherence sources for resolution improvement,” Opt. Commun. 192, 183–192 (2001). [CrossRef]
  17. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1944), pp. 452–454.
  18. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1, 157–173 (1996). [CrossRef] [PubMed]
  19. D. N. Wang, Y. N. Ning, K. T. V. Grattan, A. W. Palmer, K. Weir, “Optimized multiwavelength combination sources for interferometric use,” Appl. Opt. 33, 7326–7333 (1994). [CrossRef] [PubMed]
  20. J. Moreau, V. Loriette, A. Boccara, “Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. I. Theory,” Appl. Opt. 42, 3800–3810 (2003). [CrossRef] [PubMed]
  21. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Systems (Academic, San Diego, Calif., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited