OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 13 — May. 1, 2005
  • pp: 2564–2574

Engineering the nonlinear phase shift with multistage autoregressive moving-average optical filters

Yan Chen, Geeta Pasrija, Behrouz Farhang-Boroujeny, and Steve Blair  »View Author Affiliations


Applied Optics, Vol. 44, Issue 13, pp. 2564-2574 (2005)
http://dx.doi.org/10.1364/AO.44.002564


View Full Text Article

Enhanced HTML    Acrobat PDF (213 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and demonstrate the application of concepts from digital filter design in order to optimize artificial optical resonant structures to produce a nearly ideal nonlinear phase shift response. Multistage autoregressive moving average (ARMA) optical filters (ring-resonator-based Mach–Zehnder interferometer lattices) are designed and studied. The filter group delay is used as a measure instead of finesse or quality factor to study the nonlinear sensitivity for multiple resonances. The nonlinearity of a four-stage ARMA filter is 17 times higher than that of the intrinsic material of the same group delay. We demonstrate that the nonlinear sensitivity can be increased within constant bandwidth by allocating more in-band phase or by using higher-order filter structures and that the nonlinear sensitivity enhancement improves with increasing group delay. We also investigate methods to precompensate the nonlinear response to reduce the occurrence of optical bistabilities. The effect of optical loss, including linear absorption and two-photon absorption, is discussed in postanalysis. In addition, we discuss how the improvement in nonlinear response scales with respect to various filter parameters.

© 2005 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(190.0190) Nonlinear optics : Nonlinear optics
(190.3270) Nonlinear optics : Kerr effect
(230.5750) Optical devices : Resonators

History
Original Manuscript: April 12, 2004
Revised Manuscript: September 28, 2004
Manuscript Accepted: November 16, 2004
Published: May 1, 2005

Citation
Yan Chen, Geeta Pasrija, Behrouz Farhang-Boroujeny, and Steve Blair, "Engineering the nonlinear phase shift with multistage autoregressive moving-average optical filters," Appl. Opt. 44, 2564-2574 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-13-2564


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Morioka, M. Saruwatari, A. Takada, “Ultrafast optical multi/demultiplexer utilising optical Kerr effect in polarization-maintaining single-mode fibers,” Electron. Lett. 23, 453–454 (1987). [CrossRef]
  2. N. J. Doran, D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 311–313 (1988). [CrossRef]
  3. M. N. Islam, Ultrafast Fiber Switching Devices and Systems (Cambridge U. Press, Cambridge, 1992).
  4. M. Jinno, T. Matsumoto, “Nonlinear Sagnac interferometer switch and its applications,” IEEE J. Quantum Electron. 28, 875–882 (1992). [CrossRef]
  5. P. A. Andrekson, N. A. Olsson, D. J. Digiovanni, P. A. Morton, T. Tanbun-Ek, R. A. Logan, K. W. Wecht, “64 Gbit/s all-optical demultiplexing with the nonlinear optical-loop mirror,” IEEE Photon. Technol. Lett. 4, 644–647 (1992). [CrossRef]
  6. A. Huang, N. Whitaker, H. Avramopoulos, P. French, H. Hough, I. Chuang, “Sagnac fiber logic gates and their possible applications: a system perspective,” Appl. Opt. 33, 6254–6267 (1994). [CrossRef] [PubMed]
  7. O. Dühr, F. Seifert, V. Petrov, “Ultrafast Kerr demultiplexing up to 460 Gbit/s in short optical fibers,” Appl. Opt. 34, 5297–5300 (1995). [CrossRef]
  8. K. I. Kang, T. G. Chang, I. Glesk, P. R. Prucnal, R. K. Boncek, “Demonstration of ultrafast, all-optical, low control energy, single wavelength, polarization independent, cascadable, and integrable switch,” Appl. Phys. Lett. 67, 605–607 (1995). [CrossRef]
  9. K. L. Hall, J. P. Donnelly, S. H. Groves, C. I. Fennelly, R. J. Bailey, A. Napoleon, “40-Gbit/s all-optical circulating shift register with an inverter,” Opt. Lett. 22, 1479–1481 (1997). [CrossRef]
  10. A. J. Poustie, K. J. Blow, A. E. Kelly, R. J. Manning, “Temporal evolution of amplitude restoration and thresholding in an all-optical regenerative memory,” J. Mod. Opt. 46, 1251–1254 (1999). [CrossRef]
  11. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, G. I. Stegeman, “Enhanced self-phase modulation in tapered fibers,” Opt. Lett. 18, 1996–1998 (1993). [CrossRef] [PubMed]
  12. J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996). [CrossRef] [PubMed]
  13. T. A. Birks, J. C. Knight, P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef] [PubMed]
  14. N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999). [CrossRef]
  15. P. N. Prasad, D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991).
  16. I.-C. Khoo, Liquid Crystals. Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
  17. G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S.-W. Cheong, J. S. Sanghera, I. D. Aggarwal, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Opt. Lett. 25, 254–256 (2000). [CrossRef]
  18. V. M. Shalaev, E. Y. Poliakov, V. A. Markel, “Small-partical composites. II. Non-linear optical properties,” Phys. Rev. B 53, 2437–2449 (1996). [CrossRef]
  19. K. Stubkjaer, “Semiconductor optical amplifier based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6, 1428–1435 (2000). [CrossRef]
  20. S. Nakamura, Y. Ueno, K. Tajima, “168-Gbit/s all-optical wavelength conversion with a symmetric Mach–Zehnder type switch,” IEEE Photon. Technol. Lett. 13, 1091–1093 (2001). [CrossRef]
  21. R. J. Manning, G. Sherlock, “Recovery of a π phase shift in ∼12.5 ps in a semiconductor laser amplifier,” Electron. Lett. 31, 307–308 (1995). [CrossRef]
  22. K.-J. Boller, A. Imamolu, S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  23. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  24. R. Fitzgerald, “Ultraslow light pulse propagation observed in atoms—both cold and hot,” Phys. Today 52(7), 17–18 (1999). [CrossRef]
  25. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  26. M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]
  27. M. Bajcsy, A. S. Zibrov, M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003). [CrossRef] [PubMed]
  28. M. D. Lukin, A. Imamoglu, “Nonlinear optics and quantum entanglement of ultraslow photons,” in Quantum Electronics and Laser Science, Vol. 40 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 137–138.
  29. S. E. Harris, “Pondermotive forces with slow light,” Phys. Rev. Lett. 85, 4032–4035 (2000). [CrossRef] [PubMed]
  30. L. Brzozowski, E. H. Sargent, “Optical signal processing using nonlinear distributed feedback structures,” IEEE J. Quantum Electron. 36, 550–555 (2000). [CrossRef]
  31. N. G. R. Broderick, D. J. Richardson, M. Ibsen, “Nonlinear switching in a 20-cm-long fiber Bragg grating,” Opt. Lett. 25, 536–538 (2000). [CrossRef]
  32. A. Nahata, R. A. Linke, T. Ishi, K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003). [CrossRef] [PubMed]
  33. M. Soljacic, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, J. D. Joannopoulos, S. Fan, “Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002). [CrossRef]
  34. M. Soljacic, C. Luo, J. D. Joannopoulos, S. Fan, “Nonlinear photonic crystal microcavities for optical integration,” Opt. Lett. 28, 637–637 (2003). [CrossRef]
  35. J. Heebner, R. W. Boyd, Q.-H. Park, “SCISSOR solitons and other novel propagation effects in microresonator-modified waveguides,” J. Opt. Soc. Am. B 19, 722–731 (2002). [CrossRef]
  36. Y. Chen, S. Blair, “Nonlinear phase shift of cascaded microring resonators,” J. Opt. Soc. Am. B 20, 2125–2132 (2003). [CrossRef]
  37. Y. Chen, G. Pasrija, B. Farhang-Boroujeny, S. Blair, “Engineering the nonlinear phase shift,” Opt. Lett. 28, 1945–1947 (2003). [CrossRef] [PubMed]
  38. B. Blair, “Optical soliton-based logic gates,” Ph.D. thesis (University of Colorado, Boulder, Colo., 1998).
  39. C. K. Madsen, J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, New York, 1999). [CrossRef]
  40. R. Orta, P. Savi, R. Tascone, D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447–1449 (1995). [CrossRef]
  41. C. K. Madsen, J. H. Zhao, “A general planar waveguide autoregressive optical filter,” J. Lightwave Technol. 14, 437–447 (1996). [CrossRef]
  42. A. Melloni, M. Martinelli, “Synthesis of direct-coupled-resonators bandpass filters for WDM systems,” J. Lightwave Technol. 20, 296–303 (2002). [CrossRef]
  43. E. M. Dowling, D. L. MacFarlane, “Lightwave lattice filters for optically multiplexed communication systems,” J. Lightwave Technol. 12, 471–486 (1994). [CrossRef]
  44. J. E. Heebner, R. W. Boyd, “Enhanced all-optical switching by use of a nonlinear fiber ring resonator,” Opt. Lett. 24, 847–849 (1999). [CrossRef]
  45. S. Blair, J. Heebner, R. Boyd, “Beyond the absorption-limited nonlinear phase shift with microring resonators,” Opt. Lett. 27, 357–359 (2002). [CrossRef]
  46. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  47. A. Melloni, F. Morichetti, M. Martinelli, “Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures,” Opt. Quantum Electron. 35, 365–379 (2003). [CrossRef]
  48. Y. Chen, S. Blair, “Nonlinearity enhancement in finite coupled-resonator slow-light waveguides,” Opt. Express 12, 3353–3366 (2004). [CrossRef] [PubMed]
  49. L. Gilles, P. Tran, “Optical switching in nonlinear chiral distributed Bragg reflectors with defect layers,” J. Opt. Soc. Am. B 19, 630–639 (2002). [CrossRef]
  50. S. Blair, “Nonlinear sensitivity enhancement with one-dimensional photonic bandgap microcavity arrays,” Opt. Lett. 27, 613–615 (2002). [CrossRef]
  51. S. Blair, “Self-focusing of narrow 1-D beams in photonic microcavity arrays,” J. Opt. Soc. Am. B 20, 1520–1526 (2003). [CrossRef]
  52. C. K. Madsen, “Efficient architectures for exactly realizing optical filters with optimum bandpass designs,” IEEE Photon. Technol. Lett. 10, 1136–1138 (1998). [CrossRef]
  53. C. K. Madsen, “General IIR optical filter design for WDM applications using all-pass filters,” J. Lightwave Technol. 18, 860–868 (2000). [CrossRef]
  54. K. Jinguji, “Synthesis of coherence two-port optical delay-line circuit with ring waveguides,” J. Lightwave Technol. 14, 1882–1898 (1996). [CrossRef]
  55. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989). [CrossRef] [PubMed]
  56. C. K. Madsen, J. H. Zhao, “Postfabrication optimization of an autoregressive planar waveguide lattice filter,” Appl. Opt. 36, 642–647 (1997). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited