OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 13 — May. 1, 2005
  • pp: 2592–2599

Bulk acousto-optic wavelength agile filter module for a wavelength-multiplexed optical scanner

Zahid Yaqoob and Nabeel A. Riza  »View Author Affiliations


Applied Optics, Vol. 44, Issue 13, pp. 2592-2599 (2005)
http://dx.doi.org/10.1364/AO.44.002592


View Full Text Article

Enhanced HTML    Acrobat PDF (1269 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An acousto-optic tunable filter–based wavelength-selection module with features optimized for a wavelength-multiplexed optical scanner (W-MOS) is proposed and demonstrated. The W-MOS produces high-speed multiple scan beams if it is engaged with an agile tunable source with multiwavelength generation capability. In particular, the proposed fiber-connected module features high-speed, low-loss, narrow-linewidth, and single–multiple wavelength selection by means of radio frequency drive signal control for single- or multiple-beam scan operations. The unique module offers input laser beam power control that in turn delivers the desired scanned laser beam power shaping. Experimental results match module design theory and demonstrate a fast 5.4–µs wavelength selection speed, a low (1.53–dB) fiber-to-fiber optical insertion loss, a 5.55–nm 3–dB spectral width, and a 1500–1600–nm agile wavelength operational band.

© 2005 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.1040) Optical devices : Acousto-optical devices
(260.1180) Physical optics : Crystal optics

History
Original Manuscript: April 21, 2004
Revised Manuscript: November 27, 2004
Manuscript Accepted: December 3, 2004
Published: May 1, 2005

Citation
Zahid Yaqoob and Nabeel A. Riza, "Bulk acousto-optic wavelength agile filter module for a wavelength-multiplexed optical scanner," Appl. Opt. 44, 2592-2599 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-13-2592


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Forward, “Passive beam-deflecting apparatus,” U.S. patent3,612,659 (12October1971).
  2. N. A. Riza, “Multiplexed optical scanner technology,” U.S. patent6,687,036 (3February2004).
  3. Z. Yaqoob, A. A. Rizvi, N. A. Riza, “Free-space wavelength-multiplexed optical scanner,” Appl. Opt. 40, 6425–6438 (2001). [CrossRef]
  4. Product 5306BK-660, Thermo RGL (Richardson Grating Laboratory, Rochester, N.Y.2000).
  5. L. D. Dickson, “Method for making holographic optical elements with high diffraction efficiencies,” U.S. patent4,416,505 (22November1983).
  6. Z. Yaqoob, N. A. Riza, “Free-space wavelength-multiplexed optical scanner demonstration,” Appl. Opt. 41, 5568–5573 (2002). [CrossRef] [PubMed]
  7. Z. Yaqoob, N. A. Riza, “Low loss wavelength-multiplexed optical scanners using volume Bragg gratings for transmit-receive lasercom systems,” Opt. Eng. 43, 1128–1135 (2004). [CrossRef]
  8. L. B. Glebov, N. V. Nikonorov, E. I. Panysheva, G. T. Petrovskii, V. V. Savvin, I. V. Tunimanova, V. A. Tsekhomskii, “New ways to use photosensitive glasses for recording volume phase holograms,” Opt. Spectrosc. 73, 237–241 (1992).
  9. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 38, 619–627 (1999). [CrossRef]
  10. Z. Yaqoob, M. A. Arain, N. A. Riza, “High-speed two-dimensional laser scanner by use of Bragg gratings in photo-thermorefractive glass,” Appl. Opt. 42, 5251–5262 (2003). [CrossRef] [PubMed]
  11. G. Alibert, F. Delorme, P. Boulet, J. Landreau, H. Nakajima, “Subnanosecond tunable laser using a single electroabsorption tuning super structure grating,” IEEE Photon. Technol. Lett. 9, 895–897 (1997). [CrossRef]
  12. F. Delorme, G. Alibert, C. Ougier, S. Slempkes, H. Nakajima, “Sampled-grating DBR lasers with 181 wavelengths over 44 nm and optimized power variation for WDM applications,” in Optical Fiber Communication (OFC),Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 379–381.
  13. Z. Yaqoob, “Grating-based real-time smart optics for biomedicine and communications,” Ph.D. dissertation (University of Central Florida, Orlando, Fla., 2003).
  14. S. E. Harris, R. W. Wallace, “Acousto-optic tunable filter,” J. Opt. Soc. Am. 59, 744–747 (1969). [CrossRef]
  15. T. Yano, A. Watanabe, “New noncollinear acousto-optic tunable filter using birefringence in paratellurite,” Appl. Phys. Lett. 24, 256–258 (1974). [CrossRef]
  16. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974). [CrossRef]
  17. I. C. Chang, “Acousto-optic device and applications,” IEEE Trans. Sonics Ultrason. SU-23, 2–22 (1976). [CrossRef]
  18. I. C. Chang, “Acousto-optic tunable filters,” Opt. Eng. 20, 824–829 (1981). [CrossRef]
  19. V. B. Voloshinov, “Close to collinear acousto-optical interaction in paratellurite,” Opt. Eng. 31, 2089–2094 (1992). [CrossRef]
  20. G. Georgiev, L. Konstantinov, “Spectral characteristics of non-collinear acousto-optic tunable filters,” Opt. Laser Technol. 29, 267–270 (1997). [CrossRef]
  21. K. W. Cheung, “1 × 2 polarization-independent acousto-optic filter tunable over 1.30–1.56 µm,” Electron. Lett. 27, 314–315 (1991). [CrossRef]
  22. C. S. Qin, G. C. Huang, K. T. Chan, K. W. Cheung, “Low drive power, sidelobe free acousto-optic tunable filters/switches,” Electron. Lett. 31, 1237–1238 (1995). [CrossRef]
  23. N. A. Riza, J. Chen, “Ultrahigh 47-dB optical drop rejection multiwavelength add–drop filter using spatial filtering and dual bulk acousto-optic tunable filters,” Opt. Lett. 23, 945–947 (1998). [CrossRef]
  24. J. Sapriel, D. Charisssoux, V. Voloshinov, V. Molchanov, “Tunable acoustooptic filters and equalizers for WDM applications,” J. Lightwave Technol. 20, 892–899 (2002). [CrossRef]
  25. H. Herrmann, P. Müller-Reich, V. Reimann, R. Ricken, H. Seibert, W. Sohler, “Integrated optical, TE- and TM-pass, acoustically tunable, double stage wavelength filters in LiNbO3,” IEE Electron. Lett. 28, 642–644 (1992). [CrossRef]
  26. D. A. Satorius, T. E. Dimmick, G. L. Burdge, “Double-pass acoustooptic tunable bandpass filter with zero frequency shift and reduced polarization sensitivity,” IEEE Photon. Technol. Lett. 14, 1324–1326 (2002). [CrossRef]
  27. N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator using bulk acousto-optics,” presented at the International Conference on Photonics in Switching (PS 2003), Paris, France, 28 September–2 October 2003.
  28. N. A. Riza, M. J. Mughal, “Fiber-optic tunable multiwavelength variable attenuator and routing module designs that use bulk acousto-optics,” Appl. Opt. 44, 792–799 (2005). [CrossRef] [PubMed]
  29. H. Kogelnik, “Coupled wave theory of thick holograms,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  30. J. Xu, R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, New York, 1984).
  31. I. C. Chang, “Development of an infrared tunable acousto-optic filter,” in Practical Infrared Optics, J. Zimmerman, G. Speake, eds., Proc. SPIE131, 2–10 (1978). [CrossRef]
  32. Product 5306BK-660 (NEOS Technologies, Melbourne, Fla., 2000).
  33. M. V. Buren, N. A. Riza, “Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism,” Appl. Opt. 42, 550–565 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited