OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 13 — May. 1, 2005
  • pp: 2638–2651

Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies

Holger Eisele and Thomas Trickl  »View Author Affiliations


Applied Optics, Vol. 44, Issue 13, pp. 2638-2651 (2005)
http://dx.doi.org/10.1364/AO.44.002638


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The differential absorption lidar (DIAL) at the Institut für Meteorologie und Klimaforschung has been upgraded for precise ozone and aerosol studies in the entire troposphere and the lower stratosphere. Its excellent technical performance offers the opportunity to apply improved data processing. The existing inversion algorithm is extended to derive the optical coefficients from the backscatter profiles for three wavelengths. Correlating the correction terms of the DIAL equation and the ozone concentration yields the wavelength dependence of the backscatter and extinction coefficients of the aerosol. Under some conditions, in particular if homogeneous layers are present, the backscatter-to-extinction ratio and the reference value can also be retrieved. We find the solutions by applying evolutionary strategies. From the optical coefficients obtained in this way the ozone concentration can be calculated with substantially reduced error.

© 2005 Optical Society of America

OCIS Codes
(280.1910) Remote sensing and sensors : DIAL, differential absorption lidar
(280.3640) Remote sensing and sensors : Lidar

History
Original Manuscript: July 21, 2004
Revised Manuscript: November 30, 2004
Manuscript Accepted: December 1, 2004
Published: May 1, 2005

Citation
Holger Eisele and Thomas Trickl, "Improvements of the aerosol algorithm in ozone lidar data processing by use of evolutionary strategies," Appl. Opt. 44, 2638-2651 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-13-2638


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  2. P. Völger, J. Bösenberg, I. Schult, “Scattering properties of selected model aerosols calculated at UV-wavelengths: implications for DIAL measurements of tropospheric ozone,” Beitr. Phys. Atmos. 69, 177–187 (1996).
  3. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  4. J. D. Klett, “Lidar inversion with variable backscatter/ extinction ratios,” Appl. Opt. 24, 1638–1643 (1985). [CrossRef] [PubMed]
  5. W. Carnuth, T. Trickl, “Entfernungsaufgelöste Messung von Extinktionskoeffizienten mit Lidar,” Final Report, Contract T/R320/Q0004/Q0300, RüT IV7 (Bundesministerium für Verteidigung, Germany, 1997), in German.
  6. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  7. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983). [CrossRef] [PubMed]
  8. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983). [CrossRef] [PubMed]
  9. P. Piironen, E. W. Eloranta, “Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef] [PubMed]
  10. A. Ansmann, M. Riebesell, U. Wandinger, C. Weitkamp, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B 55, 18–28 (1991). [CrossRef]
  11. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992). [CrossRef] [PubMed]
  12. J. D. Spinhirne, J. A. Reagan, B. M. Herman, “Vertical distribution of aerosol extinction cross section and inference of aerosol imaginary index in the troposphere by lidar technique,” J. Appl. Meteorol. 19, 426–438 (1980). [CrossRef]
  13. Y. Sasano, H. Nakane, “Quantitative analysis of RHI lidar data by an iterative adjustment of the boundary condition term in the lidar solution,” Appl. Opt. 26, 615–616 (1987). [CrossRef] [PubMed]
  14. D. Gutkowicz-Krusin, “Multiangle lidar performance in the presence of horizontal inhomogeneities in atmospheric extinction and scattering,” Appl. Opt. 32, 3266–3272 (1993). [CrossRef] [PubMed]
  15. V. Matthias, J. Bösenberg, V. Wulfmeyer, “Improvement of ozone measurements with DIAL by using an additional Raman channel,” in Proceedings of the EUROTRAC Symposium 1994, P. M. Borrell, P. Borrell, T. Cvitas, W. Seiler, eds. (SPB Academic, Den Haag, The Netherlands, 1994), pp. 326–329.
  16. G. Ancellet, J. Bösenberg, “Multiwavelength techniques,” in Transport and Chemical Transformation of Pollutants in the Troposphere. Vol. 8, Instrument Development for Atmospheric Research and Monitoring, J. Bösenberg, D. Brassington, P. Simon, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 24–30.
  17. V. Matthias, “Vertikalmessungen der Aerosolextinktion und des Ozons mit einem UV-Raman-Lidar,” Dissertation, Universität Hamburg [published as Examensarbeit Nr. 80, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2000, ISSN , in German].
  18. T. J. McGee, M. Gross, R. Ferrare, W. Heaps, U. Singh, “Raman DIAL measurements of stratospheric ozone in the presence of volcanic aerosols,” Geophys. Res. Lett. 20, 955–958 (1993). [CrossRef]
  19. J. Reichardt, S. E. Bisson, S. Reichardt, C. Weitkamp, B. Neidhart, “Rotational vibrational–rotational Raman differential absorption lidar for atmospheric ozone measurements: methodology and experiment,” Appl. Opt. 39, 6072–6079 (2000). [CrossRef]
  20. J. Zeyn, W. Lahmann, C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996). [CrossRef] [PubMed]
  21. V. A. Kovalev, “Lidar measurement of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993). [CrossRef] [PubMed]
  22. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995). [CrossRef] [PubMed]
  23. S. Elouragini, P. H. Flamant, “Iterative method to determine an averaged backscatter-to-extinction ratio in cirrus clouds,” Appl. Opt. 35, 1512–1518 (1996). [CrossRef] [PubMed]
  24. J. F. Potter, “Two-frequency lidar inversion technique,” Appl. Opt. 26, 1250–1256 (1987). [CrossRef] [PubMed]
  25. J. Ackermann, “Two-wavelength lidar inversion algorithm for a two-component atmosphere,” Appl. Opt. 36, 5134–5143 (1997). [CrossRef] [PubMed]
  26. G. J. Kunz, “Two-wavelength lidar inversion algorithm,” Appl. Opt. 38, 1015–1020 (1999). [CrossRef]
  27. J. Ackermann, “Analytical solution of the two-frequency lidar inversion technique,” Appl. Opt. 38, 7414–7218 (1999). [CrossRef]
  28. Y. Sasano, H. Nakane, S. Hayashida-Amano, N. Sugimoto, I. Matsui, “Multiple-wavelength DIAL and a new analysis technique to deduce the ozone profile without systematic errors due to aerosol effects,” in Ozone in the Atmosphere, R. D. Bojkov, P. Fabian, eds. (Deepak Publishing, Hampton, Va., 1989), pp. 743–746.
  29. Z. Wang, H. Nakane, H. Hu, J. Zhou, “Three-wavelength dual differential absorption lidar method for stratospheric ozone measurements in the presence of volcanic aerosols,” Appl. Opt. 36, 1245–1252 (1997). [CrossRef] [PubMed]
  30. G. A. d'Almeida, P. Koepke, E. P. Shettle, Atmospheric Aerosols, Global Climatology and Radiative Characteristics (Deepak Publishing, Hampton, Va., 1991).
  31. U. Kempfer, W. Carnuth, R. Lotz, T. Trickl, “A wide-range ultraviolet lidar system for tropospheric ozone measurements: development and application,” Rev. Sci. Instrum. 65, 3145–3164 (1994). [CrossRef]
  32. H. Eisele, T. Trickl, “Second Generation of the IFU Stationary Tropospheric Ozone Lidar,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 379–382.
  33. W. B. Grant, E. V. Browell, N. S. Higdon, S. Ismail, “Raman shifting of KrF laser radiation for tropospheric ozone measurements,” Appl. Opt. 30, 2628–2633 (1991). [CrossRef] [PubMed]
  34. W. Carnuth, U. Kempfer, T. Trickl, “Highlights of the tropospheric lidar studies at IFU within the TOR project,” Tellus Ser. B 54, 163–185 (2002). [CrossRef]
  35. H. Eisele, “Aufbau und Betrieb eines Dreiwellenlängen-Lidars für Ozonmessungen in der gesamten Troposphäre und En-twicklung eines neuen Auswerteverfahrens zur Aerosol-korrektur,” Dissertation, Universität Tübingen, 1997 [published as Schriftenreihe des Fraunhofer-Instituts für At-mosphärische Umweltforschung, Vol. 55 (Verlag Ma-raun W. Dr., Frankfurt/Main, Germany, 1998), ISBN 3-932666-08-9, in German].
  36. H. P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995).
  37. H. Greiner, “Robust optical coating design with evolutionary strategies,” Appl. Opt. 35, 5477–5483 (1996). [CrossRef] [PubMed]
  38. U. Gropengiesser, “The ground state of the spin glass: a comparison of various biologically motivated algorithms,” J. Stat. Phys. 79, 1005–1012 (1995). [CrossRef]
  39. G. Kramm, K. D. Beheng, H. Müller, “Modeling of the vertical transport of polydispersed aerosol particles in the atmospheric surface layer,” in Precipitation Scavenging and Atmosphere-Surface Exchange, Vol. 2, The Semonin Volume: Atmosphere-Surface Exchange Processes, S. E. Schwartz, W. G. N. Slinn, eds. (Hemisphere, Washington, D.C., 1992), pp. 1125–1140.
  40. W. Carnuth, T. Trickl, “Transport studies with the IFU three-wavelength aerosol lidar during the VOTALP Mesolcina experiment,” Atmos. Environ. 34, 1425–1434 (2000). [CrossRef]
  41. C. Werner, scientific coordinator,“Improvement of lidar measurement technique for discrimination of polar stratospheric clouds and volcanic aerosols,” Final Report, European Union, Environment Research Programme Report Nr.:EV5V-CT02-0066 (European Union, Brussels, 1995).
  42. A. Papayannis, G. M. Ancellet, J. M. Pelon, G. J. Megie, “Multiwavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990). [CrossRef] [PubMed]
  43. G. Ancellet, J. Bösenberg, “Differential aerosol backscatter,” in Transport and Chemical Transformation of Pollutants in the Troposphere. Vol. 8, Instrument Development for Atmospheric Research and Monitoring, J. Bösenberg, D. Brassington, P. Simon, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 18–21.
  44. F. Immler, “A new algorithm for simultaneous ozone and aerosol retrieval from tropospheric DIAL measurements,” Appl. Phys. B 76, 593–596 (2003). [CrossRef]
  45. F. J. Dentener, P. J. Crutzen, “Reaction of N2O5on tropospheric aerosols: impact on the global distributions of NOx,O3, and OH,” J. Geophys. Res. 98 (D4), 7149–7163 (1993). [CrossRef]
  46. H. Eisele, T. Trickl, “Lidar sounding of tropospheric ozone at Garmisch-Partenkirchen,” in Atmospheric Ozone, Proceedings of the 18th Quadrennial Ozone Symposium, R. D. Bojkov, G. Visconti, eds. (International Ozone Commission, Genève, Switzerland, 1998), pp. 351–354.
  47. H. Eisele, H. E. Scheel, R. Sladkovic, T. Trickl, “High-resolution lidar measurements of stratosphere–troposphere exchange,” J. Atmos. Sci. 56, 319–330 (1999). [CrossRef]
  48. T. Trickl, O. R. Cooper, H. Eisele, P. James, R. Mücke, A. Stohl, “Intercontinental transport and its influence on the ozone concentrations over central Europe: three case studies,” J. Geophys. Res. 108 (D12), 8530, doi: (2003). [CrossRef]
  49. H. Eisele, T. Trickl, H. Claude, “Lidar als wichtige Ergänzung zur Messung troposphärischen Ozons,” in Ozonbulletin des Deutschen Wetterdiensts, Ausgabe Nr. 44, Erscheinungstermin, 25August1997 (Deutscher Wetterdienst, Offenbach, Germany, 1997), in German; http://www.dwd.de/de/FundE/Observator/MOHP/hp2/ozon/bulletin.htm .
  50. R. Reiter, W. Carnuth, R. Sladkovic, “Determination of physical and chemical properties of the aerosol from 1972 to 1982 at a North-Alpine pure air station at 1780 m a.s.l., Part III,” Arch. Met. Geoph. Bioclim. B 35, 179–201 (1984). [CrossRef]
  51. H. W. M. Salemink, P. Schotanus, J. B. Bergwerff, “Quantitative lidar at 532 nm for vertical extinction profiles and the effect of relative humidity,” Appl. Phys. B. 34, 187–189 (1984). [CrossRef]
  52. J. Ackermann, “The extinction-to-backscatter ratio of tropospheric aerosol: a numerical study,” J. Atmos. Oceanic Technol. 15, 1043–1050 (1998). [CrossRef]
  53. G. de Leeuw, G. J. Kunz, C. W. Lamberts, “Humidity effects on the backscatter/extinction ratio,” Appl. Opt. 25, 3971–3974 (1986). [CrossRef] [PubMed]
  54. D. Müller, I. Mattis, U. Wandinger, A. Ansmann, D. Althausen, O. Dubovik, S. Eckhardt, A. Stohl, “Saharan dust over a central European EARLINET–AERONET site: combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108 (D12), 4345, doi: (2003). [CrossRef]
  55. V. Freudenthaler, “Lidarmessungen der räumlichen Ausbreitung sowie mikrophysikalischer und optischer Parameter von Flugzeugkondensstreifen,” Dissertation, Universität Hohenheim, 1999 [published as Schriftenreihe des Fraunhofer-Instituts für Atmosphärische Umweltforschung, Vol. 63 (Shaker, Aachen, Germany, 2000), ISBN 3-8265-6973-3, in German].
  56. G. Pappalardo, “Lidar ratio data base,” in EARLINET: a European Aerosol Research Lidar Network to Establish an Aerosol Climatology, Final Report, European Union, J. Bösenberg, V. Matthias, eds. [published as Max-Planck-Institut für Meteorologie, Report No. 348 (Hamburg, Germany, 2003), ISSN , pp. 148–151].
  57. P. Brenner, O. Reitebuch, K. Schäfer, T. Trickl, A. Stichternath, “A novel mobile vertical-sounding system for ozone studies in the lower troposphere,” in Advances in Atmospheric Remote Sensing with Lidar, Selected Papers of the 18th International Laser Radar Conference, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, Germany, 1996), pp. 383–386.
  58. T. Trickl, “Lidar studies of tropospheric transport,” in TOR-2, Tropospheric Ozone Research, EUROTRAC-2 Subproject Final Report, A. Lindskog, ed. (EUROTRAC International Secretariat, GSF-Forschungszentrum, München, Germany, 2003), pp. 146–159.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited