OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 14 — May. 10, 2005
  • pp: 2736–2744

Miniature fiber-optic pressure sensor with a polymer diaphragm

Edvard Cibula and Denis Ðonlagić  »View Author Affiliations

Applied Optics, Vol. 44, Issue 14, pp. 2736-2744 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The fabrication and experimental investigation of a miniature optical fiber pressure sensor for biomedical and industrial applications are described. The sensor measures only 125 µm in diameter. The essential element is a thin polymer diaphragm that is positioned inside the hollow end of an optical fiber. The cavity at the fiber end is made by a simple and effective micromachining process based on wet etching in diluted HF acid. Thus a Fabry–Perot interferometer is formed between the inner fiber–cavity interface and the diaphragm. The fabrication technique is described in detail. Different sensor prototypes were fabricated upon 125 µm-diameter optical fiber that demonstrated pressure ranges from 0 to 40 and from 0 to 1200 kPa. A resolution of less than 10 Pa was demonstrated in practice. The fabrication technique presented facilitates production of simple and low-cost disposable pressure sensors by use of materials with that ensure the required biocompatibility.

© 2005 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation

Original Manuscript: August 18, 2004
Revised Manuscript: December 8, 2004
Manuscript Accepted: December 9, 2004
Published: May 10, 2005

Edvard Cibula and Denis Ðonlagić, "Miniature fiber-optic pressure sensor with a polymer diaphragm," Appl. Opt. 44, 2736-2744 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Ji, S. T. Cho, Y. Zhang, K. Najafi, K. D. Wise, “An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter,” IEEE Trans. Electron Devices 39, 2260–2266 (1992). [CrossRef]
  2. S. Chatzandroulis, D. Goustouridis, P. Normand, D. Tsoukalas, “A solid-state pressure-sensing microsystem for biomedical applications,” Sensors Actuators A 62, 551–555 (1997). [CrossRef]
  3. Y. S. Lee, K. D. Wise, “A batch-fabricated silicon capacitive pressure transducer with low temperature sensitivity,” IEEE Trans. Electron Devices ED-29, 42–48 (1982). [CrossRef]
  4. A. Druzhinin, E. Lavitska, I. Maryamova, “Medical pressure sensors on the basis of silicon microcrystals and SOI layers,” Sensors Actuators B 58, 415–419 (1999). [CrossRef]
  5. N. Wu, M. Hu, J. Shen, Q. Ma, “A miniature piezoresistive catheter pressure sensor,” Sensors Actuators A 35, 197–201 (1993). [CrossRef]
  6. R. A. Wolthuis, G. L. Mitchell, E. Saaski, J. C. Hartl, M. A. Afromowitz, “Development of medical pressure and temperature sensors employing optical spectrum modulation,” IEEE Trans. Biomed. Eng. 38, 974–981 (1991). [CrossRef] [PubMed]
  7. G. He, M. T. Wlodarczyk, “Catheter-type disposable fiber optic pressure transducer,” Proceedings of the 9th Optical Fiber Sensors Conference, (Associazione Elettrotecnica ed Elettronica Italiana, Florence, 1993), pp. 463–466.
  8. Y. J. Rao, D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18, 24, 2153–2155 (1993). [CrossRef]
  9. M. A. Chan, S. D. Collins, R. L. Smith, “A micromachined pressure sensor with fiber-optic interferometric readout,” Sensors Actuators A 43, 196–201 (1994). [CrossRef]
  10. C. Belleville, G. Duplain, “Fabry–Perot sensing device for measuring a physical parameter,” U.S. patent5,392,117 (21February1995).
  11. N. Narendran, M. A. Corbo, W. Smith, “Fiber optic pressure sensor for biomedical applications,” ASAIO J. 42, M500–M506 (1996). [CrossRef] [PubMed]
  12. O. Tohyama, M. Kohashi, M. Sugihara, H. Itoh, “A fiberoptic pressure microsensor for biomedical applications,” Sensors Actuators A 66, 150–154 (1998). [CrossRef]
  13. K. Johannesen, “Optical pressure sensor,” international patentWO 9,945,352 (10September1999).
  14. M. I. Belovolov, M. M. Bubnov, E. M. Dianov, S. L. Semenov, “Fiber-optic pressure sensor, variants and method for producing a resilient membrane,” international patentWO 9,966,299 (23December1999).
  15. T. Katsumata, Y. Haga, K. Minami, M. Esashi, “Micromachined 125 µm diameter ultra miniature fiber-optic pressure sensor for catheter,” Trans. Inst. Electron. Commun. Eng. Jpn. 120-E2, 58–63 (2000).
  16. D. C. Abeysinghe, S. Dasgupta, J. T. Boyd, H. E. Jackson, “A Novel MEMS pressure sensor fabricated on an optical fiber,” IEEE Photon. Technol. Lett. 13, 993–995 (2001). [CrossRef]
  17. J. L. Santos, A. P. Leite, D. A. Jackson, “Optical fiber sensing with a low-finesse Fabry–Perot cavity,” Appl. Opt. 31, 7361–7366 (1992). [CrossRef] [PubMed]
  18. C. E. Lee, H. F. Taylor, A. M. Markus, E. Udd, “Optical-fiber Fabry–Perot embedded sensor,” Opt. Lett. 14, 1225–1227 (1989). [CrossRef] [PubMed]
  19. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-optic Fabry–Perot interferometer and its sensor applications,” IEEE Trans. Microwave Theory Tech. MTT-30, 1612–1621 (1982). [CrossRef]
  20. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1263 (1995). [CrossRef]
  21. O. Köysal, D. Önal, S. Özder, F. Necati Ecevit, “Thickness measurement of dielectric film by wavelength scanning method,” Opt. Commun. 205, 1–6 (2002). [CrossRef]
  22. T. Li, A. Wang, K. Murphy, R. Claus, “White-light scanning fiber Michelson interferometer for absolute position-distance measurement,” Opt. Lett. 20, 785–787 (1995). [CrossRef] [PubMed]
  23. G. Beheim, K. Fritsch, R. N. Poorman, “Fiber-linked in-terferometric pressure sensor,” Rev. Sci. Instrum. 89, 1655–1659 (1987). [CrossRef]
  24. C. E. Lee, H. F. Taylor, “Fiber-optic Fabry–Perot temperature sensor using a low-coherence light source,” J. Lightwave Technol. 9, 129–134 (1991). [CrossRef]
  25. R. Sadkowski, C. E. Lee, H. F. Taylor, “Multiplexed interferometric fiber-optic sensors with digital signal processing,” Appl. Opt. 34, 5861–5866 (1995). [CrossRef] [PubMed]
  26. A. Ezbiri, R. P. Tatam, “Five wavelength interrogation technique for miniature fibre optic Fabry–Perot sensors,” Opt. Commun. 133, 62–66 (1997). [CrossRef]
  27. J. Potter, A. Ezbiri, R. P. Tatam, “A broad band signal processing technique for miniature low-finesse Fabry–Perot interferometric sensors,” Opt. Commun. 140, 11–14 (1997). [CrossRef]
  28. G. N. De Brabander, G. Beheim, J. T. Boyd, “Integrated optical micromachined pressure sensor with spectrally encoded output and temperature compensation,” Appl. Opt. 37, 3264–3267 (1998). [CrossRef]
  29. M. Schmidt, N. Fürstenau, “Fiber-optic Fabry–Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24, 599–601 (1999). [CrossRef]
  30. T. Liu, G. F. Fernando, “A frequency division multiplexed low-finesse fiber optic Fabry–Perot sensor system for strain and displacement measurements,” Rev. Sci. Instrum. 71, 1275–1278 (2000). [CrossRef]
  31. P. Kayoun, C. Puech, M. Papuchon, H. J. Arditty, “Improved coupling between laser diode and single-mode fibre tipped with a chemically etched self-centered diffracting element,” Electron. Lett. 17, 400–402 (1981). [CrossRef]
  32. Y. Zaatar, D. Zaouk, J. Bechara, A. Khoury, C. Llinaress, J. P. Charles, “Fabrication and characterization of an evanescent wave fiber optic sensor for air pollution control,” Mater. Sci. Eng. B 74, 296–298 (2000). [CrossRef]
  33. Ericsson FSU 925 PM-A fusion splicer user's manual, www.ericsson.com .
  34. Product list (Songwon Industrial Company, Ltd., South Korea, 2002), http://www.songwonind.com/publication/swpdt.pdf .
  35. C. Stropnik, L. Germic, B. Zerjal, “Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion,” J. Appl. Polym. Sci. 61, 1821–1830 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited