OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 14 — May. 10, 2005
  • pp: 2772–2781

Adaptive correction to the speckle correlation fringes by using a twisted-nematic liquid-crystal display

Erwin Hack, Phanindra Narayan Gundu, and Pramod Rastogi  »View Author Affiliations

Applied Optics, Vol. 44, Issue 14, pp. 2772-2781 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (2103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An innovative technique for reducing speckle noise and improving the intensity profile of the speckle correlation fringes is presented. The method is based on reducing the range of the modulation intensity values of the speckle interference pattern. After the fringe pattern is corrected adaptively at each pixel, a simple morphological filtering of the fringes is sufficient to obtain smoothed fringes. The concept is presented both analytically and by simulation by using computer-generated speckle patterns. The experimental verification is performed by using an amplitude-only spatial light modulator (SLM) in a conventional electronic speckle pattern interferometry setup. The optical arrangement for tuning a commercially available LCD array for amplitude-only behavior is described. The method of feedback to the LCD SLM to modulate the intensity of the reference beam in order to reduce the modulation intensity values is explained, and the resulting fringe pattern and increase in the signal-to-noise ratio are discussed.

© 2005 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(100.2650) Image processing : Fringe analysis
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry
(230.3720) Optical devices : Liquid-crystal devices

Original Manuscript: January 26, 2004
Revised Manuscript: July 9, 2004
Manuscript Accepted: November 9, 2004
Published: May 10, 2005

Erwin Hack, Phanindra Narayan Gundu, and Pramod Rastogi, "Adaptive correction to the speckle correlation fringes by using a twisted-nematic liquid-crystal display," Appl. Opt. 44, 2772-2781 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Rastogi, ed., Digital Speckle Pattern Interferometry and Related Techniques (Wiley, Chichester, England, 2001).
  2. E. Hack, “ESPI—principles and prospects,” in Trends in Optical Nondestructive Testing and Inspection, P. K. Rastogi, D. Inaudi, eds. (Elsevier, Oxford, 2000), pp. 207–239.
  3. F. Chen, W. D. Luo, M. Dale, A. Petniunas, P. Harwood, G. M. Brown, “High-speed ESPI and related techniques: overview and its applications in the automotive industry,” Opt. Lasers Eng. 40, 459–485 (2003). [CrossRef]
  4. B. Kemper, J. Kandulla, D. Dirksen, G. V. Bally, “Optimization of spatial phase shifting in endoscopic electronic speckle pattern interferometry,” Opt. Commun. 217, 151–160 (2003). [CrossRef]
  5. G. A. Slettemoen, “Electronic speckle pattern interferometric system based on a speckle reference beam,” Appl. Opt. 19, 616–623 (1980). [CrossRef] [PubMed]
  6. K. Creath, “Phase-shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef] [PubMed]
  7. P. Hariharan, B. F. Orbel, T. Eiju, “Digital phase-shifting interferometry: a simple error-compensating phase calculation,” Appl. Opt. 26, 2504–2507 (1987). [CrossRef] [PubMed]
  8. K. Creath, “Phase-shifting holographic interferometry,” in Holographic Interferometry, Vol. 68 (Springer-Verlag, Berlin, 1994), pp. 109–150. [CrossRef]
  9. Y. Surrel, “Design of algorithms for phase measurements by the use of phase stepping,” Appl. Opt. 35, 51–60 (1996). [CrossRef] [PubMed]
  10. H. H. Arsenault, G. April, “Speckle removal by optical and digital processing,” J. Opt. Soc. Am. 66, 177 (1976).
  11. A. K. Jain, C. R. Christensen, “Digital processing of images in speckle noise,” in Applications of Speckle Phenomena, W. H. Carter, ed., Proc. SPIE243, 46–50 (1980). [CrossRef]
  12. J. S. Lim, H. Nawab, “Techniques for speckle noise removal,” in Applications of Speckle Phenomena, W. H. Carter, ed., Proc. SPIE243, 35–44 (1980). [CrossRef]
  13. P. Varman, C. Wykes, “Smoothing of speckle and moiré fringes by computer processing,” Opt. Lasers Eng. 3, 87–100 (1981). [CrossRef]
  14. D. Kerr, F. M. Santoyo, J. R. Tyrer, “Manipulation of Fourier components of speckle fringe patterns as part of an interferometric analysis process,” J. Mod. Opt. 36, 195–203 (1989). [CrossRef]
  15. A. Federico, G. H. Kaufmann, “Comparative study of wavelet thresholding methods for denoising electronic speckle pattern interferometry fringes,” Opt. Eng. 40, 2598–2604 (2001). [CrossRef]
  16. R. Kumar, I. P. Singh, C. Shakher, “Measurement of out-of-plane static and dynamic deformations by processing digital speckle pattern interferometry fringes using wavelet transform,” Opt. Lasers Eng. 41, 81–93 (2004). [CrossRef]
  17. A. Davila, D. Kerr, G. H. Kaufmann, “Digital processing of electronic speckle pattern interferometry addition fringes,” Appl. Opt. 33, 5964–5969 (1994). [CrossRef] [PubMed]
  18. L. M. Novak, M. C. Burl, “Optimal speckle reduction in polarimetric SAR imagery,” IEEE Trans. Aerosp. Electron. Syst. 26, 293–305 (1990). [CrossRef]
  19. K. Lebart, J. M. Boucher, “Speckle filtering by wavelet analysis and synthesis,” in Wavelet Applications in Signal and Image Processing IV, M. A. Unser, A. Aldroubi, A. F. Laine, eds., Proc. SPIE2825, 644–651 (1996). [CrossRef]
  20. J. R. Sveinsson, J. A. Benediktsson, “Review of applications of wavelets in speckle reduction and enhancement of SAR images,” in Image and Signal Processing for Remote Sensing VII, S. B. Serpico, ed., Proc. SPIE4541, 47–58 (2002). [CrossRef]
  21. A. Achim, A. Bezerianos, P. Tsakalides, “Novel Bayesian multiscale method for speckle removal in medical ultrasound images,” IEEE Trans. Med. Imaging 20, 772–783 (2001). [CrossRef] [PubMed]
  22. M. Lehmann, “Phase-shifting speckle interferometry with unresolved speckles: a theoretical investigation,” Opt. Commun. 128, 325–340 (1996). [CrossRef]
  23. R. C. Gonzalez, R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, Mass., 1993).
  24. I. Labastida, A. Carnicer, E. Martin-Badosa, S. Vallmitjana, I. Juvells, “Optical correlation by use of partial phase-only modulation with VGA liquid-crystal displays,” Appl. Opt. 39, 766–769 (2000). [CrossRef]
  25. G. Wernicke, S. Krüger, H. Gruber, N. Demoli, M. Dürr, S. Teiwes, “Liquid crystal display as spatial light modulator for diffractive optical elements and the reconstruction of digital holograms,” in Advanced Photonic Sensors and Applications II, A. K. Asundi, W. Osten, V. J. Varadan, eds., Proc. SPIE4596, 182–190 (2001). [CrossRef]
  26. J. S. Jang, D. H. Shin, “Optical representation of binary data based on both intensity and phase modulation with a twisted-nematic liquid-crystal display for holographic digital data storage,” Opt. Lett. 26, 1797–1799 (2001). [CrossRef]
  27. S. Krueger, G. Wernicke, H. Gruber, N. Demoli, M. Duerr, S. Teiwes, “Liquid-crystal display as dynamic diffractive element,” in Projection Displays VII, M. H. Wu, ed., Proc. SPIE4294, 84–91 (2001). [CrossRef]
  28. H. J. Ferritsen, M. L. Jepsen, “Holographic recordings of nematic liquid-crystal displays,” Appl. Opt. 26, 3717–3720 (1987). [CrossRef]
  29. H. Yamazaki, M. Yamaguchi, “Experiments on a multichannel holographic optical switch with the use of a liquid-crystal display,” Opt. Lett. 17, 1228–1230 (1992). [CrossRef] [PubMed]
  30. J. L. Pezzaniti, R. A. Chipaman, “Phase-only modulation of a twisted-nematic liquid-crystal TV by use of the eigenpolarization states,” Opt. Lett. 18, 1567–1569 (1993). [CrossRef]
  31. J. A. Davis, I. Moreno, P. Tsai, “Polarization eigenstates for twisted-nematic liquid-crystal displays,” Appl. Opt. 37, 937–945 (1998). [CrossRef]
  32. I. Moreno, J. A. Davis, K. G. D'Nelly, D. B. Allison, “Transmission and phase measurement for polarization eigenvectors in twisted-nematic liquid-crystal spatial light modulators,” Opt. Eng. 37, 3048–3052 (1998). [CrossRef]
  33. A. Marquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted-nematic liquid-crystal displays based on simple physical model,” Opt. Eng. 40, 2558–2564 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited