OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 14 — May. 10, 2005
  • pp: 2799–2804

Data compression for speckle correlation interferometry temporal fringe pattern analysis

Tuck Wah Ng and Kar Tien Ang  »View Author Affiliations

Applied Optics, Vol. 44, Issue 14, pp. 2799-2804 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1353 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Temporal fringe pattern analysis is gaining prominence in speckle correlation interferometry, in particular for transient phenomena studies. This form of analysis, nevertheless, necessitates large data storage. Current compression schemes do not facilitate efficient data retrieval and may even result in important data loss. We describe a novel compression scheme that does not result in crucial data loss and allows for the efficient retrieval of data for temporal fringe analysis. In sample tests with digital speckle interferometry on fringe patterns of a plate and of a cantilever beam subjected to temporal phase and load evolution, respectively, we achieved a compression ratio of 1.6 without filtering out any data from discontinuous and low fringe modulation spatial points. By eliminating 38% of the data from discontinuous and low fringe modulation spatial points, we attained a significant compression ratio of 2.4.

© 2005 Optical Society of America

OCIS Codes
(100.2650) Image processing : Fringe analysis
(100.3010) Image processing : Image reconstruction techniques
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3940) Instrumentation, measurement, and metrology : Metrology

Original Manuscript: March 11, 2004
Revised Manuscript: September 17, 2004
Manuscript Accepted: January 10, 2005
Published: May 10, 2005

Tuck Wah Ng and Kar Tien Ang, "Data compression for speckle correlation interferometry temporal fringe pattern analysis," Appl. Opt. 44, 2799-2804 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. W. Robinson, “Automatic fringe analysis with a computer image processing system,” Appl. Opt. 22, 2169–2176 (1983). [CrossRef]
  2. K. Creath, “Phase shifting speckle interferometry,” Appl. Opt. 24, 3053–3058 (1985). [CrossRef]
  3. M. Takeda, H. Ina, S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982). [CrossRef]
  4. D. C. Ghiglia, G. A. Mastin, L. A. Romero, “Cellular automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267–280 (1987). [CrossRef]
  5. K. M. Hung, T. Yamada, “Phase unwrapping by regions using least squares approach,” Opt. Eng. 37, 2965–2970 (1998). [CrossRef]
  6. J. L. Marroquin, M. Rivera, “Quadratic regularization functionals for phase unwrapping,” J. Opt. Soc. Am. A 12, 2393–2400 (1995). [CrossRef]
  7. D. Kerr, G. H. Kaufmann, G. E. Galizzi, “Unwrapping of interferometric phase fringe maps by the discrete cosine transform,” Appl. Opt. 35, 810–816 (1996). [CrossRef] [PubMed]
  8. J. M. Huntley, H. Saldner, “Temporal phase unwrapping algorithm for automated interferogram analysis,” Appl. Opt. 32, 3047–3052 (1993). [CrossRef] [PubMed]
  9. J. M. Kilpatrick, A. J. Moore, J. S. Barton, J. D. C. Jones, M. Reeves, C. Buckberry, “Measurement of complex surface deformation by high-speed dynamic phase-stepped digital speckle pattern interferometry,” Opt. Lett. 25, 1068–1070 (2000). [CrossRef]
  10. T. E. Carlsson, A. Wei, “Phase evaluation of speckle patterns during continuous deformation by use of phase-shifting speckle interferometry,” Appl. Opt. 39, 2628–2637 (2000). [CrossRef]
  11. T. W. Ng, F. S. Chau, “Automated analysis in digital speckle shearing interferometry using an object step-loading method,” Opt. Commun. 108, 214–218 (1994). [CrossRef]
  12. T. W. Ng, “Carrier-modulated object step-loading method of automated analysis in digital speckle shearing interferometry,” J. Mod. Opt. 42, 2109–2118 (1995). [CrossRef]
  13. J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Sinusoidal least-squares fitting for temporal fringe pattern analysis,” J. Mod. Opt. 49, 2257–2266 (2002). [CrossRef]
  14. J. Villa, J. A. Gomez-Pedrero, J. A. Quiroga, “Synchronous detection techniques for temporal fringe pattern analysis,” Opt. Commun. 204, 75–81 (2002). [CrossRef]
  15. V. D. Madjarova, H. Kadono, S. Toyooka, “Dynamic electronic speckle pattern interferometry (DESPI) phase analysis with temporal Hilbert transform,” Opt. Express 11, 617–623 (2003), www.opticsexpress.org . [CrossRef] [PubMed]
  16. D. A. Huffman, “A method for the construction of minimum-redundancy codes,” Proc. IRE 9, 1098–1101 (1952). [CrossRef]
  17. P. Elias, “Universal codeword sets and representations of the integers,” IEEE Trans. Inf. Theory 21, 194–203 (1975). [CrossRef]
  18. A. Apostolico, A. S. Fraenkel, “Robust transmission of unbounded strings using Fibonacci representations,” IEEE Trans. Inf. Theory 33, 238–245 (1987). [CrossRef]
  19. T. W. Ng, “Digital speckle pattern interferometer for combined measurements of out-of-plane displacement and slope,” Opt. Commun. 116, 31–35 (1995). [CrossRef]
  20. E. Astrakharchik-Farrimond, B. Y. Shekunov, P. York, N. B. E. Sawyer, S. P. Morgan, M. G. Somekh, C. W. See, “Dynamic measurements in supercritical flow using instantaneous phase-shift interferometry,” Exp. Fluids 33, 307–314 (2002). [CrossRef]
  21. D. Ambrosi, D. Paoletti, G. Schirripa Spagnalo, “Study of free-convective onset on a horizontal wire using speckle pattern interferometry,” Int. J. Heat Mass Transfer 46, 4145–4155 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited