OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 14 — May. 10, 2005
  • pp: 2818–2826

Submicrosecond temperature measurement in liquid water with laser-induced thermal acoustics

David W. Alderfer, G. C. Herring, Paul M. Danehy, Toshiharu Mizukaki, and Kazuyoshi Takayama  »View Author Affiliations

Applied Optics, Vol. 44, Issue 14, pp. 2818-2826 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using laser-induced thermal acoustics, we demonstrate nonintrusive and remote sound-speed and temperature measurements in liquid water. Unsteady thermal gradients in the water sample produce fast, random laser beam misalignments, which are the primary source of uncertainty in these measurements. For water temperatures over the range 10 °C to 45 °C, the precision of a single 300-ns-duration measurement varies from ±1 to ±16.5 m/s for sound speed and from ±0.3 °C to ±9.5 °C for temperature. Averaging over 10 s (100 laser pulses) yields accuracies of ±0.64 m/s and ±0.45 °C for sound speed and temperature, respectively.

© 2005 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(120.6780) Instrumentation, measurement, and metrology : Temperature
(290.5900) Scattering : Scattering, stimulated Brillouin
(300.2570) Spectroscopy : Four-wave mixing

Original Manuscript: March 16, 2004
Revised Manuscript: October 1, 2004
Manuscript Accepted: October 29, 2004
Published: May 10, 2005

David W. Alderfer, G. C. Herring, Paul M. Danehy, Toshiharu Mizukaki, and Kazuyoshi Takayama, "Submicrosecond temperature measurement in liquid water with laser-induced thermal acoustics," Appl. Opt. 44, 2818-2826 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Nagayama, Y. Mori, K. Shimada, M. Nakahara, “Shock hugoniot compression curve for water up to 1 GPa by using a compressed gas gun,” J. Appl. Phys. 91, 476–482 (2002). [CrossRef]
  2. K. Takayama, “Applications of shock wave research to medicine,” presented at the 22nd International Symposium on Shock Waves, paper 2010, Imperial College, London, UK, 18–23 July, 1999.
  3. S. Hayakawa, K. Takayama, “Shock wave propagation in model tissue for medical application of shock waves,” presented at the 21st International Symposium on Shock Waves, paper 5836, Great Keppel Island, Australia, 20–25 July, 1997.
  4. G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, “The temperature of shock-compressed water,” J. Chem. Phys. 76, 6282–6286 (1982). [CrossRef]
  5. G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G. Bawendi, D. G. Nocera, “Quantum-dot optical temperature probes,” Appl. Phys. Lett. 83, 3555–3557 (2003). [CrossRef]
  6. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, W. W. Webb, “Water-soluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003). [CrossRef] [PubMed]
  7. N. C. Holmes, R. Chau, “Fast time-resolved spectroscopy in shock compressed matter,” J. Chem. Phys. 119, 3316–3319 (2003). [CrossRef]
  8. J. Karl, D. Hein, “Measuring water temperature profiles at stratified flow by means of linear Raman spectroscopy,” in Proceedings of the 2nd Japanese–German Symposium on Multi-Phase Flow (Tokyo University, Tokyo, 1997), pp. 349–358.
  9. J. Lou, T. M. Finegan, P. Mohsen, T. A. Hatton, P. E. Laibinis, “Fluorescence-based thermometry: principles and applications,” Rev. Anal. Chem. 18, 235–284 (1999). [CrossRef]
  10. E. S. Fry, J. Katz, D. Liu, T. Walther, “Temperature dependence of the Brillouin linewidth in water,” J. Mod. Opt. 49, 411–418 (2002). [CrossRef]
  11. E. B. Cummings, H. G. Hornung, M. S. Brown, P. A. DeBarber, “Measurement of gas-phase sound speed and thermal diffusivity over a broad pressure range using laser-induced thermal acoustics,” Opt. Lett. 20, 1577–1579 (1995). [CrossRef] [PubMed]
  12. R. C. Hart, R. J. Balla, G. C. Herring, “Optical measurement of the speed of sound in air over the temperature range300–650 K,” J. Acoust. Soc. Am. 108, 1946–1948 (2000). [CrossRef] [PubMed]
  13. A. Stampanoni-Panariello, B. Hemmerling, W. Hubschmid, “Temperature measurements in gases using laser induced electrostrictive gratings,” Appl. Phys. B 67, 125–130 (1998). [CrossRef]
  14. M. S. Brown, W. L. Roberts, “Single-point thermometry in high-pressure, sooting, premixed combustion environments,” J. Propul. Power 15, 119–127 (1999). [CrossRef]
  15. R. C. Hart, R. J. Balla, G. C. Herring, “Nonresonant referenced laser-induced thermal acoustics thermometry in air,” Appl. Opt. 38, 577–584 (1999). [CrossRef]
  16. Y. Nagasaka, T. Hatakeyama, M. Okuda, A. Nagashima, “Measurement of the thermal diffusivity of liquids by the forced Rayleigh scattering method: theory and experiment,” Rev. Sci. Instrum. 59, 1156–1168 (1988). [CrossRef]
  17. A. A. Maznev, D. J. McAuliffe, A. G. Doukas, K. A. Nelson, “Wide-band acoustic spectroscopy of biological material based on a laser-induced grating technique,” Ultrasound Med. Biol. 25, 601–607 (1999). [CrossRef] [PubMed]
  18. H. J. Eichler, P. Günter, D. W. Pohl, “Production and detection of dynamic gratings,” in Laser-Induced Dynamic Gratings, T. Tamir, ed. (Springer-Verlag, Berlin, 1986), pp. 13–37. [CrossRef]
  19. E. B. Cummings, I. A. Leyva, H. G. Hornung, “Laser-induced thermal acoustics (LITA) signals from finite beams,” Appl. Opt. 34, 3290–3302 (1995). [CrossRef] [PubMed]
  20. M. Chávez, V. Sosa, R. Tsumura, “Speed of sound in saturated pure water,” J. Acoust. Soc. Am. 77, 420–423 (1985). [CrossRef]
  21. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited