OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 14 — May. 10, 2005
  • pp: 2870–2878

Breadboard of a Fourier-transform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission

Luca Palchetti, Giovanni Bianchini, Francesco Castagnoli, Bruno Carli, Carmine Serio, Francesco Esposito, Vincenzo Cuomo, Rolando Rizzi, and Tiziano Maestri  »View Author Affiliations

Applied Optics, Vol. 44, Issue 14, pp. 2870-2878 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In preparation for a possible space mission, a breadboard version named REFIR-BB of the Radiation Explorer in the Far Infrared (REFIR) instrument has been built. The REFIR is a Fourier-transform spectrometer with a new optical layout operating in the spectral range 100–1100 cm−1 with a resolution of 0.5 cm−1, a7-s acquisition time, and a signal-to-noise ratio of better than 100. Its mission is the spectral measurement in the far infrared of the Earth's outgoing emission, with particular attention to the long-wavelength spectral region, which is not covered by either current or planned space missions. This measurement is of great importance for deriving an accurate estimate of the radiation budget in both clear and cloudy conditions. The REFIR-BB permits the trade-off among all instrument parameters to be studied, the optical layout to be tested, and the data-acquisition strategy to be optimized. The breadboard could be used for high-altitude ground-based campaigns or could be flown for test flights on aircraft or balloon stratospheric platforms. The breadboard's design and the experimental results are described, with particular attention to the acquisition strategy and characterization of the interferometer. Tests were performed both in laboratory conditions and in vacuum. Notwithstanding a loss of efficiency above 700 cm−1 caused by the poor performance of the photolithographic polarizers used as beam splitters, the results demonstrate the feasibility of using the spectrometer for space applications.

© 2005 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(300.6270) Spectroscopy : Spectroscopy, far infrared
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

Original Manuscript: June 14, 2004
Manuscript Accepted: November 19, 2004
Published: May 10, 2005

Luca Palchetti, Giovanni Bianchini, Francesco Castagnoli, Bruno Carli, Carmine Serio, Francesco Esposito, Vincenzo Cuomo, Rolando Rizzi, and Tiziano Maestri, "Breadboard of a Fourier-transform spectrometer for the Radiation Explorer in the Far Infrared atmospheric mission," Appl. Opt. 44, 2870-2878 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992). [CrossRef]
  2. S. A. Clough, M. J. Iacono, “Line-by-line calculation of atmospheric fluxes and cooling rates. 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995). [CrossRef]
  3. A. Sinha, J. E. Harries, “Water vapor greenhouse trapping: the role of the far infrared absorption,” Geophys. Res. Lett. 22, 2147–2150 (1995). [CrossRef]
  4. H. E. Brindley, J. E. Harries, “The impact of far I. R. absorption on clear sky greenhouse forcing: sensitivity studies at high spectral resolution,” J. Quant. Spectrosc. Radiat. Transfer 60, 151–180 (1998). [CrossRef]
  5. T. Maestri, R. Rizzi, “A study of infrared diabatic forcing of ice clouds in the tropical atmosphere,” J. Geophys. Res. 108, 4139–4154 (2003). [CrossRef]
  6. R. Rizzi, T. Maestri, “Some considerations on far infrared emission in the presence of clouds,” J. Geophys. Res. 108, 4403–4408 (2003). [CrossRef]
  7. P. Yang, M. G. Mlynczak, H. Wei, D. P. Kratz, B. A. Baum, Y. X. Hu, W. J. Wiscombe, A. Heidinger, M. I. Mishchenko, “Spectral signature of ice clouds in the far-infrared region: single-scattering calculations and radiative sensitivity study,” J. Geophys. Res. 108, 4569–4583 (2003). [CrossRef]
  8. R. Rizzi, B. Carli, J. E. Harries, J. Leotin, C. Serio, A. Sutera, B. Bizzarri, R. Bonsignori, S. Peskett, “Mission objectives and instrument requirements for the REFIR (Radiation Explorer in the Far Infrared) Mission: an outline after the end of phase B0,” in Current Problems in Atmospheric Radiation, W. L. Smith, Yu. M. Timofeyev, eds., Proceedings of the International Radiation Symposium IRS 2000 (Deepak, Hampton, Va., 2001), pp. 567–570.
  9. R. Rizzi, L. Palchetti, B. Carli, R. Bonsignori, J. E. Harries, J. Leotin, S. Peskett, C. Serio, A. Sutera, “Feasibility study of the space-borne Radiation Explorer in the Far InfraRed (REFIR),” in Optical Spectroscopic Techniques, Remote Sensing and Instrumentation for Atmospheric and Space Research IV, A. M. Larar, M. G. Mlynczak, eds., Proc. SPIE4485, 202–209 (2002). [CrossRef]
  10. European Commission, “REFIR—Radiation Explorer in the Far InfraRed,” Final Rep. ENV4-CT6-0344 (European Commission, Brussels, Belgium, 2000).
  11. B. Carli, A. Barbis, J. E. Harries, L. Palchetti, “Design of an efficient broadband far infrared FT spectrometer,” Appl. Opt. 38, 3945–3950 (1999). [CrossRef]
  12. L. Palchetti, A. Barbis, J. E. Harries, D. Lastrucci, “Design and mathematical modelling of the space-borne far-infrared Fourier transform spectrometer for REFIR experiment,” Infrared Phys. Technol. 40, 367–377 (1999). [CrossRef]
  13. T. A. Canas, J. E. Murray, J. E. Harries, “Tropospheric airborne Fourier transform spectrometer (TAFTS),” in Satellite Remote Sensing of Clouds and the Atmosphere II, J. D. Haigh, ed., Proc. SPIE3220, 91–102 (1997). [CrossRef]
  14. Y. Té P. Jeseck, C. Camy-Peyret, S. Payan, G. Perron, G. Aubertin, “Balloonborne calibrated spectroradiometer for atmospheric nadir sounding,” Appl. Opt. 41, 6431–6441 (2002). [CrossRef] [PubMed]
  15. F. Friedl-Vallon, G. Maucher, M. Seefeldner, O. Trieschmann, A. Kleinert, A. Lengel, C. Keim, H. Oelhaf, H. Fischer, “Design and characterization of the balloonborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B2),” Appl. Opt. 43, 3335–3355 (2004). [CrossRef] [PubMed]
  16. D. H. Martin, E. Puplett, “Polarised interferometric spectrometry for the millimetre and submillimetre spectrum,” Infrared Phys. Technol. 10, 105–109 (1969). [CrossRef]
  17. B. Carli, F. Mencaraglia, “Signal doubling in the Martin– Puplett interferometer,” Int. J. Infrared Millim. Waves 2, 1045–1051 (1981). [CrossRef]
  18. G. Bianchini, M. Lanfranchi, U. Cortesi, “Flight qualification of a diode laser for path difference determination of a high-resolution Fourier transform spectrometer,” Appl. Opt. 39, 962–965 (2000). [CrossRef]
  19. L. Palchetti, D. Lastrucci, “Spectral noise due to sampling error in Fourier transform spectroscopy,” Appl. Opt. 40, 3235–3243 (2001). [CrossRef]
  20. J. W. Brault, “New approach to high-precision Fourier transform spectrometer design,” Appl. Opt. 35, 2891–2896 (1996). [CrossRef] [PubMed]
  21. G. Bianchini, U. Cortesi, L. Palchetti, E. Pascale, “SAFIRE/A (Spectroscopy of the Atmosphere by Far-InfraRed Emission—Airborne): optimized instrument configuration and new assessment of spectroscopic performances,” Appl. Opt. 43, 2962–2977 (2004). [CrossRef] [PubMed]
  22. B. Carli, F. Mencaraglia, A. Bonetti, “Submillimiter high-resolution FT spectrometer for atmospheric studies,” Appl. Opt. 23, 2594–2603 (1984). [CrossRef]
  23. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988). [CrossRef] [PubMed]
  24. B. Carli, L. Palchetti, P. Raspollini, “Effect of beam splitter emission in Fourier-transform spectroscopy,” Appl. Opt. 38, 7475–7480 (1999). [CrossRef]
  25. R. Rizzi, M. Matricardi, F. Miskolczi, “On the simulation of up-looking and down-looking high-resolution radiance spectra using two different radiative transfer models,” Appl. Opt. 41, 940–956 (2002). [CrossRef] [PubMed]
  26. L. S. Rothman, A. Barbe, D. Chris Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transfer 82, 5–44 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited