OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 14 — May. 10, 2005
  • pp: 2887–2894

Real-time trace-level detection of carbon dioxide and ethylene in car exhaust gases

Michael T. McCulloch, Nigel Langford, and Geoffrey Duxbury  »View Author Affiliations

Applied Optics, Vol. 44, Issue 14, pp. 2887-2894 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A direct-absorption spectrometer, based on a pulsed, distributed feedback, quantum cascade laser with a 10.26-µm wavelength and an astigmatic Herriott cell with a 66-m path length, has been developed for high-resolution IR spectroscopy. This spectrometer utilizes the intrapulse method, an example of sweep integration, in which the almost linear wavelength up-chirp obtained from a distributed feedback, quantum cascade laser yields a spectral microwindow of as many as 2.5 wave numbers/cm−1. Within this spectral microwindow, molecular fingerprints can be monitored and recorded in real time. This system allows both the detection of carbon dioxide and ethylene and the real-time observation of the evolution of these gases in the exhaust by-products from several cars.

© 2005 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(280.1740) Remote sensing and sensors : Combustion diagnostics
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

Original Manuscript: December 30, 2003
Revised Manuscript: October 6, 2004
Manuscript Accepted: October 29, 2004
Published: May 10, 2005

Michael T. McCulloch, Nigel Langford, and Geoffrey Duxbury, "Real-time trace-level detection of carbon dioxide and ethylene in car exhaust gases," Appl. Opt. 44, 2887-2894 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Fried, B. P. Wert, B. Henry, J. R. Drummond, “Airborne tunable diode laser measurements of formaldehyde,” Spectrochim. Acta Part A 55, 2097–2110 (1999). [CrossRef]
  2. D. Richter, A. Fried, B. P. Wert, J. G. Walega, F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281–288 (2002). [CrossRef]
  3. M. Nagele, M. W. Sigrist, “Mobile laser spectrometer with novel resonant multipass photoacoustic cell for trace-gas sensing,” Appl. Phys. B 70, 895–901 (2000). [CrossRef]
  4. A. A. Kosterev, F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002). [CrossRef]
  5. D. A. Yarekha, M. Beck, S. Blaser, T. Aellen, E. Gini, D. Hofstetter, J. Faist, Electron. Lett. 39, 1123–1125 (2003). [CrossRef]
  6. S. Anders, W. Schrenk, C. Pflugl, E. Gornik, G. Strasser, C. Becker, C. Sirtori, “Room-temperature operation of Ga-As-based quantum cascade lasers processed as ridge and microcavity waveguides,” IEE Proc. Optoelectron. 150, 282–283 (2003). [CrossRef]
  7. J. S. Yu, S. Slivken, L. Doris, M. Razeghi, “High-power continuous-wave operation of a 6-µm quantum cascade laser at room temperature,” Appl. Phys. Lett. 83, 2503–2505 (2003). [CrossRef]
  8. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001). [CrossRef]
  9. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum cascade laser,” Opt. Lett. 23, 219–221 (1998). [CrossRef]
  10. E. Normand, M. McCulloch, G. Duxbury, N. Langford, “Fast, real-time spectrometer based on a pulsed quantum cascade laser,” Opt. Lett. 28, 16–18 (2003). [CrossRef] [PubMed]
  11. M. T. McCulloch, E. L. Normand, N. Langford, G. Duxbury, D. A. Newnham, “Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum cascade lasers,” Opt. Soc. Am. B 8, 1761–1768 (2003). [CrossRef]
  12. G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap. 2.1.6. [CrossRef]
  13. R. G. Derwent, M. E. Jenkin, S. M. Saunders, “Photochemical ozone creation potentials for a large number of reactive hydrocarbons under European conditions,” Atmos. Environ. 30, 181–199 (1996). [CrossRef]
  14. G. Baumbach, Air Quality Control (Springer-Verlag, Berlin, 1996), Chap.7.3.3. [CrossRef]
  15. J. Kaspar, P. Fornasiero, N. Hickey, “Automotive catalytic converters: current status and some perspectives,” Catal. Today 77, 419–449 (2003). [CrossRef]
  16. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995). [CrossRef] [PubMed]
  17. Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, M. E. Parrish, R. E. Baren, K. H. Shafer, C. N. Harward, “Quantum cascade infrared laser spectroscopy for real-time cigarette smoke analysis,” Anal. Chem. 75, 5180–5190 (2003). [CrossRef]
  18. T. Beyer, M. Braun, S. Hartwig, A. Lambrecht, “Linewidth measurements of free-running, pulsed, distributed-feedback quantum cascade lasers,” J. Appl. Phys. 95, 4551–4554 (2004). [CrossRef]
  19. T. A. Blake, S. W. Sharpe, R. L. Sams, Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (personal communication, 2003).
  20. R. R. Ernst, “Sensitivity enhancement in magnetic resonance,” in Advances in Magnetic Resonance, Vol. II, J. S. Waugh, ed. (Academic, New York, 1966), pp. 1–135. [CrossRef]
  21. M. T. McCulloch, N. Langford, G. Duxbury, “Observation of rapid passage induced saturation in the 10.25 µm spectrum of ethylene using a frequency chirped quantum cascade laser,” Mol. Phys., submitted for publication.
  22. E. C. Richard, K. K. Kelly, R. H. Winkler, R. Wilson, T. L. Thompson, R. J. McLauchlin, A. L. Schmeltekopf, A. F. Tuck, “A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH4in the upper troposphere and lower stratosphere,” Appl. Phys. B 75, 183–194 (2002). [CrossRef]
  23. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, P. Varanasi, “The HITRAN molecular database; 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 665–710 (1998). [CrossRef]
  24. W. E. Blass, J. J. Hillman, A. Fayt, S. J. Daunt, L. R. Senesac, A. C. Ewing, L. W. Jennings, J. S. Hager, S. L. Mahan, D. C. Reuter, M. Sirota, “10-µm ethylene: spectroscopy, intensities, and a planetary modeler's atlas,” J. Quant. Spectrosc. Radiat. Transfer 71, 47–60 (2001). [CrossRef]
  25. A. G. Maki, J. S. Wells, “Wave-number calibration tables from heterodyne frequency measurements (version 1.3),” http://physics.nist.gov/wavenum (4February2003);originally published as NIST Spec. Publ. 821 (National Institute of Standards and Technology, Gaithersburg, Md., 1987).
  26. S. Schilt, L. Thevenaz, E. Courtois, P. A. Robert, “Ethylene spectroscopy using a quasi-room-temperature quantum cascade laser,” Spectrochim. Acta Part A 58, 2533–2539 (2002). [CrossRef]
  27. R. E. Baren, M. E. Parrish, K. H. Shafer, C. N. Harward, Q. Shi, D. D. Nelson, J. B. McManus, M. S. Zahniser, “Quad quantum cascade infrared laser spectroscometer with dual gas cells for the simultaneous analysis of mainstream and side-stream cigarette smoke,” Spectrochim. Acta Part A 60, 3437–3447 (2004). [CrossRef]
  28. D. Wiedmann, A. A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, F. K. Tittel, “Monitoring of ethylene by a pulsed quantum-cascade laser,” Appl. Opt. 43, 3329–3334 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited