OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 15 — May. 20, 2005
  • pp: 2963–2969

Harmonic suppression and defect enhancement using Schlieren processing

Eugenio Garbusi, José A. Ferrari, and César D. Perciante  »View Author Affiliations

Applied Optics, Vol. 44, Issue 15, pp. 2963-2969 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Schlieren technique is a well-known coherent processing method that is usually applied to the visualization of phase objects. In this paper, we demonstrate that, when the Schlieren processing is applied to a light wave modulated in amplitude and possessing some periodicity, the harmonic contents of the resultant image decreases (i.e., the higher harmonics are suppressed). Also, we show that, when the amplitude-modulated (periodic) light wave possesses faults, the Schlieren processing produces an enhancement of the faults relative to the periodic carrier. This technique can be applied to defect detection in periodic structures such as photomasks used for LCD panels, integrated-circuit masks, or semiconductor wafers.

© 2005 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.4630) Instrumentation, measurement, and metrology : Optical inspection

Original Manuscript: October 20, 2004
Revised Manuscript: December 20, 2004
Manuscript Accepted: December 20, 2004
Published: May 20, 2005

Eugenio Garbusi, José A. Ferrari, and César D. Perciante, "Harmonic suppression and defect enhancement using Schlieren processing," Appl. Opt. 44, 2963-2969 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Okamoto, I. Yamaguchi, K. Yamagata, “Real-time enhancement of defects in periodic patterns by use of a bacteriorhodopsin film,” Opt. Lett. 22, 337–339 (2004). [CrossRef]
  2. J. Kato, I. Yamaguchi, H. Tanaka, “Nonlinear spatial filtering with a dye-doped liquid-crystal cell,” Opt. Lett. 21, 767–769 (1996). [CrossRef] [PubMed]
  3. T. Huang, K. H. Wagner, “Photoanisotropic incoherent-to-coherent optical conversion,” Appl. Opt. 32, 1890–1900 (1993). [CrossRef]
  4. C. Uhrich, L. Hesselink, “Submicrometer defect detection in periodic structures by photorefractive holography: system design and performance,” Appl. Opt. 33, 744–757 (1994). [CrossRef] [PubMed]
  5. E. U. Wagemann, H.-J. Tiziani, “Spatial self-filtering using photorefractive and liquid crystals,” J. Mod. Opt. 45, 1885–1897 (1998). [CrossRef]
  6. J. Feinberg, “Real-time edge enhancement using the photore-fractive effect,” Opt. Lett. 5, 330–332 (1980). [CrossRef]
  7. E. Ochoa, J. W. Goodman, L. Hesselink, “Real-time enhancement of defects in a periodic mask using photorefractive Bi12SiO20,” Opt. Lett. 10, 430–432 (1985). [CrossRef] [PubMed]
  8. C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22, 1424–1426 (1997). [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics 6th ed. (Pergamon, London, 1989), Chap. 8.
  10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988).
  11. G. O. Reynolds, J. B. DeVelis, G. B. Parrent, B. J. Thompson, eds., The New Physical Optics Notebook: Tutorials in Fourier Optics (SPIE, Bellingham, Wash., 1989). [CrossRef]
  12. B. Zakharin, J. Stricker, “Schlieren systems with coherent illumination for quantitative measurements,” Appl. Opt. 43, 4786–4795 (2004). [CrossRef] [PubMed]
  13. J. B. Brackenridge, J. Peterka, “Criteria for quantitative Schlieren interferometry,” App. Opt. 6, 731–735 (1967). [CrossRef]
  14. L. Joannes, F. Dubois, J.-C. Legros, “Phase-shifting Schlieren: high resolution quantitative Schlieren that uses the phase shifting technique principle,” Appl. Opt. 42, 5046–5053 (2003). [CrossRef] [PubMed]
  15. G. Serafino, P. Sirotti, “Phase image visualization with white light extended sources: a Fourier-optics-based interpretation,” Opt. Eng. 41, 2549–2555 (2002). [CrossRef]
  16. E. W. Weisstein, “Hilbert transform,” in MathWorld (Wolfram Research, Champaign, IL, 1999); http://mathworld.wolfram.com/HilbertTransform.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited