OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 15 — May. 20, 2005
  • pp: 3024–3031

System modeling and optimization of Fourier holographic memory

Péter Várhegyi, Pál Koppa, Ferenc Ujhelyi, and Emoke Lorincz  »View Author Affiliations

Applied Optics, Vol. 44, Issue 15, pp. 3024-3031 (2005)

View Full Text Article

Acrobat PDF (706 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new fast-Fourier-transform-based model of a page-oriented holographic data-storage system is presented. The model accounts for essential system and storage material features (e.g. diffraction, noises, and saturation) and provides reliable results in the form of output images, histograms, or bit-error rates. The model is built on a modular basis and provides the possibility of working with different system versions, key components, and storage materials. Applications of the method are presented through examples of optimization of the data density, reference beam size at Gaussian beam illumination, and calculation of the storage medium's positioning tolerances in accordance with the results of test measurements.

© 2005 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(210.2860) Optical data storage : Holographic and volume memories
(220.4830) Optical design and fabrication : Systems design

Péter Várhegyi, Pál Koppa, Ferenc Ujhelyi, and Emoke Lorincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer-Verlang, Berlin, 2000).
  2. J. T. Gallo, M. L. Jones, and C. M. Verber, "Computer modeling of the effects of apertures in the Fourier-transform plane of Fourier-transform imaging-systems," Appl. Opt. 33, 2891-2899 (1994).
  3. A. Lahrichi, "Bit error rate and system limitations on the storage capacity of volume holographic memory systems," Opt. Eng. 40, 2392-2399 (2001).
  4. M.-P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Appl. Opt. 36, 3107-3115 (1997).
  5. M.-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems," Appl. Opt. 37, 5377-5385 (1998).
  6. V. Vadde and B. V. K. Vijaya Kumar, "Channel modeling and estimation for interpage equalization in pixel-matched volume holographic data storage," Appl. Opt. 38, 4374-4386 (1999).
  7. M. Keskinoz and B. V. K. Vijaya Kumar, "Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels," Appl. Opt. 43, 1368-1378 (2004).
  8. G. A. Betzos, M. S. Porter, J. F. Hutton, and P. A. Mitkas, "Optical storage interactive simulator (OASIS): an interactive tool for the analysis of page-oriented optical memories," Appl. Opt. 37, 6115-6126 (1998).
  9. P. Várhegyi, Á. Kerekes, Sz. Sajti, F. Ujhelyi, P. Koppa, G. Szarvas, and E. Lorincz, "Saturation effect in azobenzene polymers used for polarization holography," Appl. Phys. B 76, 397-402 (2003).
  10. A. Süto and E. Lorincz, "Optimisation of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik (Stuttgart) 115, 541-546 (2004).
  11. B. M. King, G. W. Burr, and M. A. Neifeld, "Experimental demonstration of gray-scale sparse modulation codes in volume holographic storage," Appl. Opt. 42, 2546-2559 (2003).
  12. E. Lorincz, G. Szarvas, P. Koppa, F. Ujhelyi, G. Erdei, A. Süto, P. Várhegyi, Sz. Sajti, Á. Kerekes, T. Ujvári, and P. S. Ramanujam, "Polarization holographic data storage using azobenzene polyester as storage material," in Organic Photonic Materials and Devices V, J.G.Grote and T.Kaino, eds., Proc. SPIE 4991, 34-44 (2003).
  13. G. Erdei, G. Szarvas, E. Lorincz, J. Fodor, F. Ujhelyi, P. Koppa, P. Várhegyi, and P. Richter, "Optical system of holographic memory card writing/reading equipment," in Novel Optical System Design and Optimization III, J.M.Sasian, ed., Proc. SPIE 4092, 109-118 (2000).
  14. P. Várhegyi, P. Koppa, E. Lorincz, G. Szarvas, and P. Richter, "Optimization of the storage density in thin polarization holograms," in Holography 2000, T. H. Jeong and W. K. Sobotka, eds., Proc. SPIE 4149, 315-323 (2000).
  15. F. Dai and C. Gu, "Effect of Gaussian references on cross-talk noise reduction in volume holographic memory," Opt. Lett. 22, 1802-1804 (1997).
  16. T. Ujvári, P. Koppa, M. Lovász, P. Várhegyi, Sz. Sajti, E. Lorincz, and P. Richter, "A secure data storage system based on phase-encoded thin polarization holograms," J. Opt. A. Pure Appl. Opt. 6, 401-411 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited