OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 15 — May. 20, 2005
  • pp: 3032–3044

Tropospheric CO observed with the NAST-I retrieval methodology, analyses, and first results

Daniel K. Zhou, William L. Smith, Xu Liu, Jun Li, Allen M. Larar, and Stephen A. Mango  »View Author Affiliations

Applied Optics, Vol. 44, Issue 15, pp. 3032-3044 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (4944 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-resolution infrared spectra from aircraft and space-based observations contain information about tropospheric carbon monoxide (CO) as well as other trace species. A methodology for retrieving tropospheric CO from such remotely sensed spectral data has been developed for the National Polar-Orbiting Operational Environmental Satellite System’s Airborne Sounder Testbed—Interferometer (NAST-I). CO profiles of the troposphere, together with its thermodynamic properties, are determined by use of a three-stage retrieval approach that combines the algorithms of physically based statistical eigenvector regression, simultaneous and iterative matrix inversion, and single-variable error-minimization CO profile matrix inverse retrieval. The NAST-I is collecting data while it is aboard high-altitude aircraft throughout many field campaigns. Detailed retrieval analyses based on the NAST-I instrument system along with retrieval results from several recent field campaigns are presented to demonstrate NAST-I CO retrieval capability.

© 2005 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1280) Atmospheric and oceanic optics : Atmospheric composition
(280.0280) Remote sensing and sensors : Remote sensing and sensors

Original Manuscript: June 7, 2004
Manuscript Accepted: November 11, 2004
Published: May 20, 2005

Daniel K. Zhou, William L. Smith, Xu Liu, Jun Li, Allen M. Larar, and Stephen A. Mango, "Tropospheric CO observed with the NAST-I retrieval methodology, analyses, and first results," Appl. Opt. 44, 3032-3044 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Levy, “Natural atmosphere: large radical and formaldehyde concentrations predicted,” Science 173, 141–143 (1971). [CrossRef] [PubMed]
  2. J. Fishman, K. Fakharuzzaman, B. Cros, D. Nganga, “Identification of widespread pollution in the Southern Hemisphere deduced from satellite analyses,” Science 252, 1693–1696 (1990). [CrossRef]
  3. P. J. Crutzen, L. E. Heidt, J. P. Krasnec, W. H. Hollock, “Biomass burning as a source of atmospheric gases CO, H2, N2O NO, CH3Cl, and COS,” Nature 282, 253–256 (1979). [CrossRef]
  4. J. R. Drummond, “Measurements of Pollution in the Troposphere (MOPITT),” in The Use of EOS for Studies of Atmospheric Physics, J. C. Gille, G. Visconti, eds. (North-Holland, Amsterdam, 1992), pp. 1269–1284.
  5. L. Pan, J. C. Gille, D. P. Edwards, P. L. Bailey, C. D. Rodgers, “Retrieval of tropospheric carbon monoxide for the MOPITT experiment,” J. Geophys. Res. 103, 32,277–32,290 (1998). [CrossRef]
  6. M. N. Deeter, L. K. Emmons, G. L. Francis, D. P. Edwards, J. C. Gille, J. X. Warner, B. Khattatov, D. Ziskin, J.-F. Lamarque, S.-P. Ho, V. Yudin, J.-L. Attié, D. Packman, J. Chen, D. Mao, J. R. Drummond, “Operational carbon monoxide retrieval algorithm and selected results for the MOPITT instrument,” J. Geophys. Res. 108(D14), 4399, 10.1029/2002JD003186 (2003). [CrossRef]
  7. R. Beer, T. A. Glavich, D. M. Rider, “Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite,” Appl. Opt. 40, 2356–2367 (2001). [CrossRef]
  8. D. Q. Wark, H. E. Fleming, “Indirect measurements of atmospheric temperature profiles from satellite. I. Introduction,” Mon. Weather Rev. 94, 351–362 (1966). [CrossRef]
  9. W. L. Smith, H. M. Woolf, “The use of eigenvectors of statistical co-variance matrices for interpreting satellite sounding radiometer observations,” J. Atmos. Sci. 33, 1127–1140 (1976). [CrossRef]
  10. W. W. McMillan, L. L. Strow, W. L. Smith, H. E. Revercomb, H. L. Huang, A. M. Thompson, D. P. McNamara, W. F. Ryan, “Remote sensing of carbon monoxide over the continental United States on September12–23, 1993,” J. Geophys. Res. 102, 10,695–10,709 (1997). [CrossRef]
  11. C. Clerbaux, J. Hadji-Lazaro, S. Turquety, G. Mégie, P.-F. Coheur, “Trace gas measurements from infrared satellite for chemistry and climate application,” Atmos. Chem. Phys. 3, 1495–1508 (2003). [CrossRef]
  12. D. Cousins, W. L. Smith, “National Polar-Orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I),” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 323–331 (1997). [CrossRef]
  13. W. L. Smith, A. M. Larar, D. K. Zhou, C. A. Sisko, J. Li, B. Huang, H. B. Howell, H. E. Revercomb, D. Cousins, M. J. Gazarik, D. Mooney, “NAST-I: results from revolutionary aircraft sounding spectrometer,” in Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, A. M. Larar, ed., Proc. SPIE3756, 2–8 (1999). [CrossRef]
  14. W. L. Smith, D. K. Zhou, F. W. Harrison, H. E. Revercomb, A. M. Larar, H. L. Huang, B. Huang, “Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft,” in Hyperspectral Remote Sensing of the Land and Atmosphere, W. L. Smith, Y. Yasuoka, eds., Proc. SPIE4151, 94–102 (2001). [CrossRef]
  15. D. K. Zhou, W. L. Smith, J. Li, H. B. Howell, G. W. Cantwell, A. M. Larar, R. O. Knuteson, D. C. Tobin, H. E. Revercomb, S. A. Mango, “Thermodynamic product retrieval methodology for NAST-I and validation,” Appl. Opt. 41, 6957–6967 (2002). [CrossRef] [PubMed]
  16. C. Clerbaux, J. Hadji-Lazaro, P. Sebastien, C. Camy-Peyret, J. Wang, D. P. Edwards, M. Luo, “Retrieval of CO from nadir remote-sensing measurements in the infrared by use of four different inversion algorithms,” Appl. Opt. 41, 7068–7078 (2002). [CrossRef] [PubMed]
  17. X. Liu, J.-L. Moncet, D. K. Zhou, W. L. Smith, “A fast and accurate forward model for NAST-I instrument,” in Fourier Transform Spectroscopy and Optical Remote Sensing of Atmosphere, 2003 Technical Digest Series OSA (Optical Society of America, Washington, D.C., 2003), p. 16.
  18. W. J. Wiscombe, J. W. Evans, “Exponential-sum fitting of radiative transmission functions,” J. Comput. Phys. 24,416–444 (1977). [CrossRef]
  19. J. L. Moncet, X. Liu, H. Rieu-Isaacs, H. Snell, S. Zaccheo, R. Lynch, J. Eluszkiewicz, Y. He, G. Uymin, C. Lietzke, J. Hegarty, S. Boukabara, A. Lipton, J. Pickle, “Algorithm theoretical basis document (ATBD) for the Cross Track Infrared Sounder (CrIS) environmental data records (EDR),” VI.2.3, AER document P882-TR-E-1.2.3-ATBD-03-01 (Atmospheric and Environmental Research, Boston, Mass., 2003).
  20. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor,” J. Geophys. Res. 97, 15,761–15,785 (1992). [CrossRef]
  21. X. Liu, Science Directorate, NASA Langley Research Center, 21 Langley Boulevard Hampton, Va. 23681 (personal communication, 2004).
  22. J. Li, “Temperature and water vapor weighting functions from radiative transfer equation with surface emissivity and solar reflectivity,” Adv. Atmos. Sci. 11, 421–426 (1994). [CrossRef]
  23. X. L. Ma, T. J. Schmit, W. L. Smith, “A nonlinear physical retrieval algorithm—its application to the GOES-8/9 sounder,” J. Appl. Meteorol. 38, 501–513 (1999). [CrossRef]
  24. S. Twomey, “On the numerical solution of Fredholm integral equations of the first kind by inversion of the linear system produced by quadrature,” J. Assoc. Comput. Mach. 10, 97–101 (1963). [CrossRef]
  25. A. N. Tikhonov, “On the solution of incorrectly stated problems and a method of regularization,” Dokl. Acad. Nauk. SSSR 151, 501–504 (1963).
  26. C. D. Rodgers, “Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation,” Rev. Geophys. Space Phys. 14, 609–624 (1976). [CrossRef]
  27. P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion(SIAM, Philadelphia, Pa., 1998). [CrossRef]
  28. C. D. Rodgers, “Characterization and error analysis of profile retrieved from remote sounding measurements,” J. Geophys. Res. 95, 5587–5595 (1990). [CrossRef]
  29. C. D. Rodgers, Inversion Methods for Atmospheric Sounding: Theory and Practice (World Scientific, River Edge, N.J., 2000).
  30. W. Seiler, J. Fishman, “The distribution of carbon monoxide and ozone in the free troposphere,” J. Geophys. Res. 86, 7225–7265 (1981).
  31. G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL atmospheric concentration profiles(0–120 km),” Tech. Rep. AFGL-TR-86-0110 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1987).
  32. G. W. Sachse, G. F. Hill, L. O. Wade, M. G. Perry, “Fast-response, high-precision carbon monoxide sensor using a tunable diode laser absorption technique,” J. Geophys. Res. 92, 2071–2081 (1987). [CrossRef]
  33. W. Seiler, “The cycle of atmospheric CO,” Tellus 26, 117–135 (1974). [CrossRef]
  34. L. E. Heidt, J. P. Krasnec, R. A. Lueb, W. H. Pollock, B. E. Henry, P. J. Crutzen, “Latitudinal distribution of CO and CH4over the Pacific,” J. Geophys. Res. 85, 7329–7336 (1980). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited