OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 15 — May. 20, 2005
  • pp: 3069–3076

Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures

Haroldo T. Hattori, Vitor M. Schneider, Rogério M. Cazo, and Carmem L. Barbosa  »View Author Affiliations


Applied Optics, Vol. 44, Issue 15, pp. 3069-3076 (2005)
http://dx.doi.org/10.1364/AO.44.003069


View Full Text Article

Enhanced HTML    Acrobat PDF (233 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recently, photonic crystal band-edge structures have been analyzed in the literature. However, most devices that have been presented so far emit light in different directions. We present a modal analysis (no gain included) of a few schemes to improve the directionality of these devices, i.e., in such a way that light that exits from them will travel mainly in a certain direction, eventually coupling its energy to a wide waveguide.

© 2005 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers

History
Original Manuscript: August 3, 2004
Revised Manuscript: December 27, 2004
Manuscript Accepted: January 4, 2005
Published: May 20, 2005

Citation
Haroldo T. Hattori, Vitor M. Schneider, Rogério M. Cazo, and Carmem L. Barbosa, "Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures," Appl. Opt. 44, 3069-3076 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-15-3069


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998), http://www.opticsexpress.org . [CrossRef] [PubMed]
  4. T. Asano, M. Mochizuki, S. Noda, M. Okano, M. Imada, “A channel drop filter using a single defect in a 2-D photonic crystal slab: defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,” J. Lightwave Technol. 21, 1370–1376 (2003). [CrossRef]
  5. R. Costa, A. Melloni, M. Martinelli, “Bandpass resonant filters in photonic-crystal waveguides,” IEEE Photon. Technol. Lett. 15, 401–403 (2003). [CrossRef]
  6. T. Matsumoto, T. Baba, “Photonic crystal k-vector superprism,” J. Lightwave Technol. 22, 917–922 (2004). [CrossRef]
  7. S. Fan, S. G. Johnson, J. D. Joannopoulos, C. Manolatou, H. A. Haus, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165 (2001). [CrossRef]
  8. Y. G. Roh, S. Yoon, S. Kim, H. Jeon, S. H. Han, Q. H. Park, I. Park, “Photonic crystal waveguides with multiple 90° bends,” Appl. Phys. Lett. 83, 231–233 (2003). [CrossRef]
  9. J. Smajic, C. Hafner, D. Erni, “Design and optimization of an achromatic photonic crystal bend,” Opt. Express 11, 1378–1384 (2003), http://www.opticsexpress.org . [CrossRef] [PubMed]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  11. P. T. Lee, J. R. Cao, S. J. Choi, Z. J. Wei, J. D. O’Brien, “Operation of photonic crystal membrane lasers above room temperature,” Appl. Phys. Lett. 81, 3311–3313 (2002). [CrossRef]
  12. A. G. Smirnov, D. V. Ushakov, V. K. Konokenko, “Multiple-wavelength lasing in one-dimensional bandgap structures: implementation with active n–i–p–i layers,” J. Opt. Soc. Am. B 19, 2208–2214 (2002). [CrossRef]
  13. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002). [CrossRef]
  14. C. Monat, C. Seassal, X. Letartre, P. Regreny, M. Gendry, P. Rojo-Romeo, P. Viktorovitch, “Two-dimensional hexagonal-shaped microcavities formed in a two-dimensional photonic crystal on a InP membrane,” J. Appl. Phys. 93, 23–31 (2003). [CrossRef]
  15. H. Y. Ryu, M. Notomi, G. H. Kim, Y. H. Lee, “High quality-factor whispering gallery mode in the photonic crystal hexagonal disk cavity,” Opt. Express 12, 1708–1719 (2004), http://www.opticsexpress.org . [CrossRef] [PubMed]
  16. K. Inoshita, T. Baba, “Lasing at bend, branch and intersection of photonic crystals,” Electron. Lett. 39, 844–846 (2003). [CrossRef]
  17. K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, C. Gmachl, “Experimental demonstration of a high quality factor photonic crystal microcavity,” Appl. Phys. Lett. 83, 1915–1917 (2003). [CrossRef]
  18. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, Y. H. Lee, “Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 80, 3901–3903 (2002). [CrossRef]
  19. N. Yokouchi, A. J. Danner, K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003). [CrossRef]
  20. H. T. Hattori, X. Letartre, C. Seassal, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, “Analysis of hybrid photonic crystal vertical cavity surface emitting lasers,” Opt. Express 11, 1799–1808 (2003), http://www.opticsexpress.org . [CrossRef] [PubMed]
  21. M. Yokohama, S. Noda, “Polarization mode control of two-dimensional photonic crystal laser having a square lattice,” IEEE J. Quantum Electron. 39, 1074–1080 (2003). [CrossRef]
  22. D. Ohnishi, T. Okano, M. Imada, S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004), http://www.opticsexpress.org . [CrossRef] [PubMed]
  23. C. Monat, C. Seassal, X. Letartre, P. Viktorovitch, P. Regreny, M. Gendry, P. Rojo-Romeo, G. Hollinger, E. Jalaguier, S. Pocas, B. Aspar, “InP two-dimensional photonic crystal on silicon: in-plane Bloch mode laser,” Appl. Phys. Lett. 81, 5102–5104 (2002). [CrossRef]
  24. S. H. Kwon, H. Y. Ryu, G. H. Kim, Y. H. Lee, “Photonic bandedge lasers in a two-dimensional square-lattice photonic crystal slab,” Appl. Phys. Lett. 83, 3870–3872 (2002). [CrossRef]
  25. S. Y. Lin, J. G. Fleming, I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593–595 (2003). [CrossRef]
  26. J. S. Foresi, “Photonic bandgap microcavities in channel waveguides,” Nature 390, 143–145 (1997). [CrossRef]
  27. L. Florescu, K. Busch, S. John, “Semiclassical theory of lasing in photonic crystals,” J. Opt. Soc. Am. B 19, 2215–2223 (2002). [CrossRef]
  28. J. Topol’ancik, S. Pradhan, P.-C. Yu, S. Gosh, P. Bhattacharya, “Electrically injected photonic crystal edge-emitting quantum-dot laser source,” IEEE Photon. Technol. Lett. 16, 960–962 (2004). [CrossRef]
  29. S. G. Johnson, J. Joannopoulos, “Bloch-iterative frequency domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org . [CrossRef] [PubMed]
  30. B. Cagnac, J. P. Faroux, Lasers: Interaction Lumière-Atomes, 1st ed.(Editions CNRS, Paris, 2002).
  31. N. Susa, “Threshold gain and gain-enhancement due to distributed-feedback in two-dimensional photonic crystal lasers,” J. Appl. Phys. 89, 815–823 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited