OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 15 — May. 20, 2005
  • pp: 3077–3086

High-index-contrast waveguides and devices

Mee-Koy Chin, Chee-Wei Lee, Shuh-Ying Lee, and Stevanus Darmawan  »View Author Affiliations


Applied Optics, Vol. 44, Issue 15, pp. 3077-3086 (2005)
http://dx.doi.org/10.1364/AO.44.003077


View Full Text Article

Enhanced HTML    Acrobat PDF (892 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical and experimental study of high-index-contrast waveguides and basic (passive) devices built from them. Several new results are reported, but to be more comprehensive we also review some of our previous results. We focus on a ridge waveguide, whose strong lateral confinement gives it unique properties fundamentally different from the conventional weakly guiding rib waveguides. The ridge waveguides have distinct characteristics in the single-mode and the multimode regimes. The salient features of the single-mode waveguides are their subwavelength width, strong birefringence, relatively high propagation loss, and high sensitivity to wavelength as well as waveguide width, all of which may limit device performance yet provide new opportunities for novel device applications. On the other hand, wider multimode waveguides are low loss and robust. In addition, they have a critical width where the birefringence is minimal or zero, giving rise to the possibility of realizing intrinsically polarization-independent devices. They can be made effectively single mode by employing differential leakage loss (with an appropriate etch depth) or lateral mode filtering (with a taper waveguide). Together these waveguides provide the photonic wire for interconnections and the backbone to build a broad range of compact devices. We discuss basic single-mode devices (based on directional couplers) and multimode devices (multimode interferometers) and indicate their underlying relationship.

© 2005 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices

History
Original Manuscript: October 11, 2004
Manuscript Accepted: December 2, 2004
Published: May 20, 2005

Citation
Mee-Koy Chin, Chee-Wei Lee, Shuh-Ying Lee, and Stevanus Darmawan, "High-index-contrast waveguides and devices," Appl. Opt. 44, 3077-3086 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-15-3077


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Sneh, C. R. Doerr, “Indium phosphide photonic circuits and components,” in Integrated Optical Circuits and Components, E. J. Murphy, ed. (Marcel Dekker, New York, 1999), Chap. 7.
  2. B. Little, S. T. Chu, H. Haus, J. Foresi, J. P. Laine, “Micro-ring resonator channel dropping filters,” IEEE J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  3. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y. G. Zhou, S. T. Ho, “GaAs microcavity channel-dropping filter based on a race-track resonator,” IEEE Photon. Technol. Lett. 11, 1620–1622 (1999). [CrossRef]
  4. Y. Ma, S. Park, L. Wang, S. T. Ho, “Ultracompact multimode interference 3-dB coupler with strong lateral confinement by deep dry etching,” IEEE Photon. Technol. Lett. 12, 492–494 (2000). [CrossRef]
  5. C. van Dam, L. H. Spiekman, F. P. G. M. van Ham, F. H. Groen, J. J. G. M. van der Tol, I. Moerman, W. W. Pascher, M. Hamacher, H. Heidrich, C. M. Weinert, M. K. Smit, “Novel compact polarization converters based on ultra-short bends,” IEEE Photon. Technol. Lett. 8, 1346–1348 (1996). [CrossRef]
  6. M. K. Chin, S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonator,” J. Lightwave Technol. 16, 1433–1446 (1998). [CrossRef]
  7. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, “Photonic-wire lasers,” Phys. Rev. Lett. 75, 2678–2680 (1995). [CrossRef] [PubMed]
  8. W. Chi, C. Rolland, F. Shepherd, C. Larocque, N. Puetz, K. D. Chi, J. M. Xu, “InGaAsP/InP vertical directional coupler filter with optimally designed wavelength tunability,” IEEE Photon. Technol. Lett. 4, 457–459 (1993).
  9. R. J. Deri, E. Kapon, “Low loss III-V semiconductor optical waveguides,” IEEE J. Quantum Electron. 27, 626–640 (1991). [CrossRef]
  10. V. Van, P. P. Absil, J. V. Hryniewicz, P. T. Ho, “Propagation loss in single-mode GaAs-AlGaAs microring resonators: measurement and model,” J. Lightwave Technol. 19, 1734–1739 (2001). [CrossRef]
  11. R. A. Forber, E. Marom, “Symmetric directional coupler switches,” IEEE J. Quantum Electron. 22, 911–919 (1986). [CrossRef]
  12. D. Rafizadeh, S. T. Ho, “Numerical analysis of vectorial wave propagation in waveguides with arbitrary refractive index profiles,” Opt. Commun. 141, 17–20 (1997). [CrossRef]
  13. M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, S. L. Wu, Z. Ren, R. Wang, L. Wang, Y. G. Zhao, S. T. Ho, “Ultra-compact directional coupler and race-track microcavity resonators as building blocks for WDM devices,” CLEO (Optical Society of America, Washington, D.C., 1999), paper CPD22.
  14. B. J. Offrein, G. L. Bona, F. Horst, W. M. Salemink, R. Beyeler, R. Germann, “Wavelength tunable optical add-after-drop filter with flat passband for WDM networks,” IEEE Photon. Technol. Lett. 11, 239–241 (1999). [CrossRef]
  15. C. W. Lee, S. Darmawan, S. Y. Lee, M. K. Chin, “Theoretical design of polarization-insensitive CWDM filter based on ridge-waveguide directional coupler,” J. Lightwave Technol. (to be published).
  16. J. J. G. M. van der Tol, J. M. Pedersen, E. G. Metaal, J.J.-W. van Gaalen, Y. S. Oei, F. H. Groen, “A short polarization splitter without metal overlays on InGaAsP-InP,” IEEE Photon. Technol. Lett. 9, 209–211 (1997). [CrossRef]
  17. A. Melloni, P. Monguzzi, R. Costa, M. Martinelli, “Design of curved waveguides: the matched bend,” J. Opt. Soc. Am. A 20, 130–137 (2003). [CrossRef]
  18. M. K. Chin, C. W. Lee, J. Y. Shen, “Polarization-independent vertical coupler for photonic integration,” Opt. Express 12, 117–123 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  19. J. M. Heaton, M. M. Bourke, S. B. Jones, B. H. Smith, K. P. Hilton, G. W. Smith, J. C. H. Birbeck, G. Berry, S. V. Dewar, D. R. Wight, “Optimization of deep-etched, single-mode GaAs/AlGaAs optical waveguides using controlled leakage into the substrate,” J. Lightwave Technol. 17, 267–281 (1999). [CrossRef]
  20. M. K. Chin, C. Xu, W. P. Huang, “Theoretical approach to a polarization-insensitive single-mode microring resonator,” Opt. Express 12, 3245–3250 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  21. T. Ozeki, T. Ito, T. Tamura, “Tapered section of multimode cladded fibers as mode filters and mode analyzers,” Appl. Phys. Lett. 26, 386–388 (1975). [CrossRef]
  22. W. K. Burns, “Normal mode analysis of waveguide devices. Part I: Theory,” J. Lightwave Technol. 6, 1051–1057 (1988). [CrossRef]
  23. S. Y. Lee, S. Darmawan, C. W. Lee, M. K. Chin, “Transformation between directional couplers and multi-mode interferometers based on ridge waveguides,” Opt. Express 12, 3079–3085 (2004), www.opticsexpress.org . [CrossRef] [PubMed]
  24. L. B. Soldano, E. C. M. Penning, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995). [CrossRef]
  25. C. Thermistos, B. M. A. Rahman, “Design issues of a multimode interference-based 3-dB splitter,” Appl. Opt. 41, 7037–7044 (2002). [CrossRef]
  26. M. Rajarajan, B. M. A. Rahman, K. T. V. Grattan, “A rigorous comparison of the performance of directional couplers with multimode interference devices,” J. Lightwave Technol. 17, 243–248 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited