OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3153–3159

Determination of optical birefringence by using off-axis transmission ellipsometry

Gerald E. Jellison, Jr. and Christopher M. Rouleau  »View Author Affiliations


Applied Optics, Vol. 44, Issue 16, pp. 3153-3159 (2005)
http://dx.doi.org/10.1364/AO.44.003153


View Full Text Article

Enhanced HTML    Acrobat PDF (120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Utilizing transmission ellipsometry at small angles of incidence, it is shown that c-cut uniaxial samples can be used to determine both the miscut of the optic axis with respect to the plane of incidence as well as very accurate values of the spectroscopic birefringence. For example, wafers of ZnO, LiNbO3, and 6H-SiC single-crystals are examined and the miscut direction and the spectroscopic birefringence are determined. While all materials show strong dispersion in birefringence, ZnO exhibits a distinct isotropic point at 396.8 nm.

© 2005 Optical Society of America

OCIS Codes
(120.2130) Instrumentation, measurement, and metrology : Ellipsometry and polarimetry
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(160.1190) Materials : Anisotropic optical materials
(260.1180) Physical optics : Crystal optics

History
Original Manuscript: June 15, 2004
Revised Manuscript: November 30, 2004
Manuscript Accepted: February 14, 2005
Published: June 1, 2005

Citation
Gerald E. Jellison and Christopher M. Rouleau, "Determination of optical birefringence by using off-axis transmission ellipsometry," Appl. Opt. 44, 3153-3159 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-16-3153


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born, E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, Cambridge1997).
  2. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965). [CrossRef]
  3. F. A. Modine, R. W. Major, E. Sonder, “High frequency polarization modulation method for measuring birefringence,” Appl. Opt. 14, 757–760 (1975). [CrossRef] [PubMed]
  4. C. F. Wong, “Birefringence measurement using a photoelastic modulator,” Appl. Opt. 18, 3996–3999 (1979). [CrossRef] [PubMed]
  5. T. Fukazawa, Y. Fujita, “Polarization modulated transmission spectro-ellipsometry,” Rev. Sci. Instrum. 67, 1951–1955 (1996). [CrossRef]
  6. B. L. Wang, T. C. Oakberg, “A new instrument for measuring both the magnitude and angle of low level linear birefringence,” Rev. Sci. Instrum. 70, 3847–3854 (1999). [CrossRef]
  7. B. L. Wang, “Linear birefringence measurement instrument using two photoelastic modulators” Opt. Eng. 41, 981–987 (2002). [CrossRef]
  8. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.
  9. G. E. Jellison, C. O. Griffiths, D. E. Holcomb, C. M. Rouleau, “Transmission 2- modulator generalized ellipsometry (2-MGE) measurements,” Appl. Opt. 41, 6555–6566 (2002). [CrossRef] [PubMed]
  10. G. E. Jellison, F. A. Modine, “Two modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184–8189 (1997). [CrossRef]
  11. G. E. Jellison, F. A. Modine, “Two modulator generalized ellipsometry: theory,” Appl. Opt. 36, 8190–8198 (1997). [CrossRef]
  12. P. S. Hauge, “Mueller matrix ellipsometry with imperfect compensators,” J. Opt. Soc. Am. 68, 1519–1528 (1978). [CrossRef]
  13. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31, 6676–6683 (1992). [CrossRef] [PubMed]
  14. C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, R. W. Collins, “Multichannel Mueller matrix ellipsometer based on the dual rotating compensator principle,” Thin Solid Films, 455–456, 14–23 (2004). [CrossRef]
  15. J. F. Elman, J. Greener, C. M. Herzinger, B. Johs, “Characterization of biaxially- stretched plastic films by generalized ellipsometry,” Thin Solid Films 313–314, 814–818 (1998). [CrossRef]
  16. C. M. Herzinger, “System and mathematical regression-based method utilizing optical data, for identifying optical axis orientation in material systems such as optical compensators and retarders,” U. S. Patent5,835,222 (10November1998).
  17. G. E. Jellison, L. A. Boatner, “Optical functions of uniaxial ZnO determined by generalized ellipsometry,” Phys. Rev. B 58, 3586–3589 (1998). [CrossRef]
  18. E. D. Palik “Lithium Niobate (LiNbO3)” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, New York, 1985), pp. 695–702. [CrossRef]
  19. D. F. Nelson, R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688–3689 (1974). [CrossRef]
  20. J. G. Berman, A. Ashkin, A. A. Ballman, J. M. Dziedzic, H. J. Levinstein, R. G. Smith, “Curie temperature, birefringence, and phase-matching temperature variations in LiNbO3as a function of melt stoichiometry,” Appl. Phys. Lett. 12, 92–94 (1968). [CrossRef]
  21. G. E. Jellison, C. O. Griffiths, D. E. Holcomb, C. M. Rouleau, “Characterization of linear diattenuator and retarders using a two-modulator generalized ellipsometer (2-MGE)” in Polarization Measurement, Analysis, and Application V, D. H. Goldstein, D. B. Chenault; eds., Proc. SPIE4819, 9–19 (2002). [CrossRef]
  22. N. W. Tibault, “Morphological and structural crystallography and optical properties of silicon carbide. Part II: Structural crystallography and optical properties,” Am. Mineral. 29, 327–362 (1944).
  23. P. T. B. Schaffer, “Refractive index, dispersion, and birefringence of silicon carbide polytypes,” Appl. Opt. 10, 1034–1036 (1971). [CrossRef]
  24. W. J. Choyke, E. D. Palik “Silicon carbide (SiC),” in Handbook of Optical Constants of Solids, E. D. Palik, ed., (Academic Press, New York, 1985), pp. 587–595. [CrossRef]
  25. M. Kildemo, “Optical properties of silicon carbide polytypes below and around bandgap,” Thin Solid Films, 455–456, 187–195 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited