OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3167–3173

Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films

Kazuo Watabe, Pavel Polynkin, and Masud Mansuripur  »View Author Affiliations

Applied Optics, Vol. 44, Issue 16, pp. 3167-3173 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications.

© 2005 Optical Society of America

OCIS Codes
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(210.4590) Optical data storage : Optical disks
(240.0310) Optics at surfaces : Thin films
(310.6870) Thin films : Thin films, other properties

Original Manuscript: March 4, 2004
Revised Manuscript: January 7, 2005
Manuscript Accepted: January 20, 2005
Published: June 1, 2005

Kazuo Watabe, Pavel Polynkin, and Masud Mansuripur, "Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films," Appl. Opt. 44, 3167-3173 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. Zhang, S. Chu, J. Ho, C. Grigoropoulos, “Excimer laser ablation of thin gold films on a quartz crystal microbalance at various background pressures,” Appl. Phys. A 64, 545–552 (1997). [CrossRef]
  2. A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).
  3. T. N. Thomas, C. J. Stevens, A. J. S. Choudhary, J. F. Ryan, D. Mihailovic, T. Mertelj, L. Forro, G. Wagner, J. E. Evetts, “Photoexcited carrier relaxation and localization in Bi2Sr2Ca1−yYy Cu2O8and YBa2Cu3O7−δ: a study by femtosecond time-resolved spectroscopy,” Phys. Rev. B 53, 12436–12440 (1996). [CrossRef]
  4. M. Zavrtanik, J. Demsar, B. Podobnik, D. Mihalovic, J. Evetts, “Analysis of the photoresponse of Y-Ba-Cu-O thin films on ps to µs timescales,” in Applied Spectroscopy 1997: Proceedings of EUCAS 1977, The Third European Conference on Applied Superconductivity, Vol. 1 of Institute of Physics Conference Series, H. Rogalla, D. H. A. Blank, eds. (Institute of Physics, London, 1997), pp. 149–156.
  5. N. Taketoshi, T. Baba, A. Ono, “Observation of heat diffusion across submicrometer metal thin films using a picosecond thermoreflectance technique,” Jpn. J. Appl. Phys. 38, L1268–L1271 (1999). [CrossRef]
  6. W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer, “Thermal conductivity measurements of GaAs/AlAs superlattices using a picosecond optical pump-and-probe technique,” Phys. Rev. B 59, 8105–8113 (1999). [CrossRef]
  7. G. Langer, J. Hartmann, M. Reichling, “Thermal conductivity of thin metallic films measured by photothermal profile analysis,” Rev. Sci. Instrum. 68, 1510–1513 (1997). [CrossRef]
  8. D. Chu, M. Touzelbaev, E. Goodson, S. Babin, R. Fabian Pease, “Thermal conductivity measurements of thin-film resist,” Vac. Sci. Technol. B 19, 2874–2877 (2001). [CrossRef]
  9. C. Paddock, G. Eesley, “Transient thermoreflectance from thin metal films,” J. Appl. Phys. 60, 285–290 (1987). [CrossRef]
  10. C. W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K. R. Wilson, D. von der Linde, C. P. J. Barty, “Detection of nonthermal melting by ultrafast x-ray diffraction,” Science 286, 1340–1342 (1999). [CrossRef] [PubMed]
  11. D. Price, R. More, R. Walling, G. Guethlein, R. Shepherd, R. Stewart, W. White, “Absorption of ultrashort laser pulses by solid targets heated rapidly to temperatures 1-1000 eV,” Phys. Rev. Lett. 75, 252–255 (1995). [CrossRef] [PubMed]
  12. Y. Hitoki, M. Hidetoshi, U. Ken-ichi, R. Moore, “Ultrashort-pulse laser ellipsometric pump-probe experiments on gold targets,” Phys. Rev. Lett. 91, 075004 1–4 (2003).
  13. T. Yamane, S. Katayama, M. Todoki, “Analysis of ac temperature wave during the measurement of thermal diffusivity of two-layered platelike samples,” J. Appl. Phys. 80, 2019–2026 (1996). [CrossRef]
  14. G. Chen, P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett. 74, 2942–2944 (1999). [CrossRef]
  15. G. Palasantzas, J. De Hosson, “Mound surface roughness effects on the thermal capacitance of thin films,” J. Appl. Phys. 89, 6130–6134 (2001). [CrossRef]
  16. J. Batista, D. Takeuti, A. Mansanares, E. da Silva, “Contrast and sensitivity enhancement in photothermal reflectance microscopy through the use of specific probing wavelengths: applications to microelectronics,” Anal. Sci. 17, S73–S75 (2001).
  17. M. Mansuripur, G. Connell, J. Goodman, “Laser-induced local heating of multilayers,” Appl. Opt. 21, 1106–1114 (1982). [CrossRef] [PubMed]
  18. K. Watabe, P. Polynkin, M. Mansuripur, “Behavior of GeSbTeBi phase-change optical recording media under sub-nanosecond pulsed laser irradiation,” Appl. Opt. 43, 4033–4040 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited