OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3197–3207

Microholographic multilayer optical disk data storage

Robert R. McLeod, Andrew J. Daiber, Mark E. McDonald, Timothy L. Robertson, Timothy Slagle, Sergei L. Sochava, and Lambertus Hesselink  »View Author Affiliations


Applied Optics, Vol. 44, Issue 16, pp. 3197-3207 (2005)
http://dx.doi.org/10.1364/AO.44.003197


View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Micrometer-sized reflection holograms can be written into a rapidly rotating homogeneous photopolymer disk at the focus of a high-numerical-aperture beam and its retroreflection to implement high-capacity multilayer digital data storage. This retroreflection is generated by an optical system with positive unity magnification to ensure passive alignment of the counterpropagating beam. Analysis reveals that the storage capacity and transfer rate of this bit-based holographic storage system compare favorably with traditional page-based systems but at a fraction of the system complexity and cost. The analysis is experimentally validated at 532 nm by writing and reading 12 layers of microholograms in a 125-µm photopolymer disk continuously rotating at 3600 rpm. The experimental results predict a capacity limit of 140 Gbytes in a millimeter-thick disk or over 1 Tbyte with the wavelength and numerical aperture of Blu-Ray.

© 2005 Optical Society of America

OCIS Codes
(090.4220) Holography : Multiplex holography
(160.5470) Materials : Polymers
(180.1790) Microscopy : Confocal microscopy
(210.2860) Optical data storage : Holographic and volume memories
(210.4590) Optical data storage : Optical disks

History
Original Manuscript: October 28, 2004
Revised Manuscript: January 19, 2005
Manuscript Accepted: January 20, 2005
Published: June 1, 2005

Citation
Robert R. McLeod, Andrew J. Daiber, Mark E. McDonald, Timothy L. Robertson, Timothy Slagle, Sergei L. Sochava, and Lambertus Hesselink, "Microholographic multilayer optical disk data storage," Appl. Opt. 44, 3197-3207 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-16-3197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393–400 (1963). [CrossRef]
  2. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, Berlin, 2000). [CrossRef]
  3. J. F. Heanue, “Volume holographic storage of digital data implemented in photorefractive media,” Ph.D. Dissertation (Stanford University, Stanford, California, 1995).
  4. A. B. Marchant, Optical Recording (Addison-Wesley, Reading, Mass., 1990).
  5. K. A. Rubin, H. J. Rosen, W. W. Tang, W. Imaino, T. C. Strand, “Multilevel volumetric optical disk storage,” in 1994 Topical Meeting on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 247–250 (1994). [CrossRef]
  6. D. H. Pontius, “Confocal optical microscopy system for multilevel data storage and retrieval,” U.S. Patent5,619,371, (8April1997).
  7. A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998). [CrossRef]
  8. W. I. Imaino, H. J. Rosen, K. A. Rubin, T. C. Strand, M. E. Best, “Extending the compact disk format to high capacity for video applications,” in 1994 Topical Meetings on Optical Data Storage, D. K. Campbell, M. Chen, K. Ogawa, eds., Proc. SPIE2338, 254–259 (1994). [CrossRef]
  9. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” in Diffractive and Holographic Optics Technology III, I. Cindrich, S. H. Lee, eds., Proc. SPIE2689, 127–141 (1996). [CrossRef]
  10. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999). [CrossRef]
  11. T. Wilson, Y. Kawata, S. Kawata, “Readout of three-dimensional optical memories,” Opt. Lett. 21, 1003–1005 (1996). [CrossRef] [PubMed]
  12. S. Hunter, F. Kiamilev, S. C. Esener, D. A. Parthenopoulos, P. M. Rentzepis, “Potentials of two-photon based 3-D optical memories for high performance computing,” Appl. Opt. 29, 2058–2066 (1990). [CrossRef] [PubMed]
  13. M. M. Wang, S. C. Esener, “Three-dimensional optical data storage in a fluorescent dye-doped photopolymer,” Appl. Opt. 39, 1826–1834 (2000). [CrossRef]
  14. Y. Kawata, T. Tanaka, S. Kawata, R. Juskaitis, T. Wilson, “Differential phase-contrast microscope with a split detector for the readout system of a multilayered optical memory,” Appl. Opt. 35, 2466–2470 (1996). [CrossRef] [PubMed]
  15. S. Homan, A. E. Willner, “High-capacity optical storage using multiple wavelengths, multiple layers and volume holograms,” Electron Lett. 31, 621–623 (1995). [CrossRef]
  16. H. J. Eichler, P. Kuemmel, S. Orlic, A. Wappelt, “High-density disk storage by multiplexed microholograms,” in IEEE J. Sel. Top. Quantum Electron. 4, 840–848 (1998). [CrossRef]
  17. S. Orlic, S. Ulm, H. Ju. Eichler, “3D bit-oriented optical storage in photopolymers,” J. Opt. A 3, 72–81 (2001). [CrossRef]
  18. See, for example, http://www.inphase-tech.com/products/tapestrymedia/index.html .
  19. P. Mouroulis, J. Macdonald, Geometrical Optics and Optical Design (Oxford U. Press, New York, 1997).
  20. S. Somalingam, K. Dressbach, M. Hain, S. Stankovic, T. Tschudi, J. Knittel, H. Richter, “Effective spherical aberration compensation by use of a nematic liquid-crystal device,” Appl. Opt. 43, 2722–2729 (2004). [CrossRef] [PubMed]
  21. M. E. McDonald, Y. C. Lee, “Spherical aberration correction using flying lens and method,” U.S. Patent6,064,529 (16May2000).
  22. M. E. McDonald, A. J. Daiber, “Method and apparatus for adjustable spherical aberration correction and focusing,” U.S. Patent6,091,549 (18July2000).
  23. A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,288,804 (11September2001).
  24. A. J. Daiber, M. E. McDonald, “Positive unit magnification reflective optics for holographic storage,” U.S. Patent6,147,782 (14November2000).
  25. M. McDonald, R. McLeod, “Focus error signal generation using a birefringent lens with confocal detection,” U.S. Patent6,269,057 (31July2001).
  26. Z. Liu, G. J. Steckman, D. Psaltis, “Holographic recording of fast phenomena,” Appl. Phys. Lett. 80, 731–733 (2002). [CrossRef]
  27. G. Odian, Principles of Polymerization (McGraw-Hill, New York, 1970).
  28. W. S. Colburn, K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971). [CrossRef] [PubMed]
  29. J. T. Sheridan, J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  30. R. Hazel, E. LaBudde, “Preformating method for random recording and playback of an optical memory disk,” SPIE 35th Annual Conference Proceedings on Decision and Control, B7 (1982).
  31. T. Tanaka, S. Kawata, “Comparison of recording densities in three-dimensional optical storage systems: multilayered bit recording versus angularly multiplexed holographic recording,” J. Opt. Soc. Am. A 13, 935–943 (1996). [CrossRef]
  32. A. C. Strasser, E. S. Maniloff, K. M. Johnson, S. D. D. Goggin, “Procedure for recording multiple-exposure holograms with equal diffraction efficiency in photorefractive media,” Opt. Lett. 14, 6–9 (1989). [CrossRef] [PubMed]
  33. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969). [CrossRef]
  34. F. H. Mok, G. W. Burr, D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996). [CrossRef] [PubMed]
  35. B. M. King, M. A. Neifeld, “Sparse modulation coding for increased capacity in volume holographic storage,” Appl. Opt. 39, 6681–6688 (2000). [CrossRef]
  36. A. Daiber, R. McLeod, R. Snyder, “Sparse modulation codes for holographic data storage,” U.S. Patent6,549,664 (15April2003).
  37. U. Brand, G. Hester, J. Grochmalicki, R. Pike, “Super-resolution in optical data storage,” J. Opt. A 1, 794–800 (1999). [CrossRef]
  38. X. An, D. Psaltis, G. W. Burr, “Thermal fixing of 10,000 holograms in LiNbO3:Fe,” Appl. Opt. 38, 386–393 (1999). [CrossRef]
  39. M. A. Neifeld, M. McDonald, “Lens-design issues affecting parallel readout of optical disks,” Appl. Opt. 34, 5167–5174 (1995). [CrossRef] [PubMed]
  40. S. S. Orlov, “Volume holographic data storage,” Commun. ACM 23, 47–54 (2000).
  41. T. Maeda, H. Koyanagi, “Semiconfocal optical disk readout with one linear-spread beam,” Appl. Opt. 37, 8167–8172 (1998). [CrossRef]
  42. R. Arai, M. Mizukami, T. Tanabe, K. Katoh, T. Yashizawa, H. Yamazaki, S. Murata, Y. Tanaka, I. Sato, “Feasibility study on high data transfer rate of 300 Mbits/s with eight-beam laser diode array,” Jpn. J. Appl. Phys. 32, 5411–5416 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited