OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3218–3223

Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors

Donghyun Kim  »View Author Affiliations


Applied Optics, Vol. 44, Issue 16, pp. 3218-3223 (2005)
http://dx.doi.org/10.1364/AO.44.003218


View Full Text Article

Acrobat PDF (230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of azimuthal orientation on the electromagnetic coupling of surface plasmons with the incident and diffracted light of a grating-coupled surface-plasmon resonance (GC-SPR) biosensor is investigated, and its practical implications are explored. For this purpose a GC-SPR biosensor model is considered, and well-established rigorous coupled-wave analysis is used. Numerical results indicate significant variations in surface-plasmon resonance characteristics in connection with the interaction between surface-plasmon polaritons associated with multiple-order diffraction. The results are discussed as they relate to applications that require minimal rotation sensitivity.

© 2005 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons

Citation
Donghyun Kim, "Effect of the azimuthal orientation on the performance of grating-coupled surface-plasmon resonance biosensors," Appl. Opt. 44, 3218-3223 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-16-3218


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. C. Nylanderm, B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators 3, 79-88 (1982-1983).
  2. K. Matsubara, S. Kawata, and S. Minami, "Optical chemical sensor based on surface plasmon measurement," Appl. Opt. 27, 1160-1163 (1988).
  3. B. Rothenhäusler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
  4. S. Löfås and B. Johnson, "A novel hydrogel matrix on gold surfaces in surface plasmon resonance sensors for fast and efficient covalent immobilization of ligands," J. Chem. Soc. Chem. Commun. 21, 1526-1528 (1990).
  5. B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, "Near-infrared surface plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments," Anal. Chem. 71, 3928-3934 (1999).
  6. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
  7. E. Kretschmann, "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen," Z. Phys. 241, 313-324 (1971).
  8. Y. Y. Teng and E. A. Stern, "Plasma radiation from metal grating surfaces," Phys. Rev. Lett. 19, 511-514 (1967).
  9. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, "Surface-plasmon resonance effect in grating diffraction," Phys. Rev. Lett. 21, 1530-1533 (1968).
  10. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981).
  11. Y. J. Chen, E. S. Kosteles, R. J. Seymour, G. J. Sonek, and J. M. Ballantyne, "Surface plasmons on gratings: coupling in the minigap regions," Solid State Commun. 46, 95-99 (1983).
  12. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 6.
  13. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
  14. M. C. Hutley, Diffraction Gratings (Academic, San Diego, Calif., 1982), pp. 175-213.
  15. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 1997), pp. 285-321.
  16. B. T. Hallam, J. R. Sambles, and S. C. Kitson, "Ultraviolet surface plasmons on aluminum and a noncontact technique for characterizing short-pitch gratings," J. Mod. Opt. 46, 1099-1105 (1999).
  17. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003).
  18. W. Lukosz, "Integrated optical chemical and direct biochemical sensors," Sens. Actuators B 29, 37-50 (1995).
  19. J. J. Ramsden, "Optical biosensors," J. Mol. Recognit. 10, 109-120 (1997).
  20. J. M. Brockman and S. M. Fernandez, "Grating-coupled surface plasmon resonance for rapid, label-free, array-based sensing," Am. Lab. (Shelton, Conn.) 33, 37-40 (2001).
  21. T. J. Zieziulewicz, D. W. Unfricht, N. Hadjout, M. A. Lynes, and D. A. Lawrence, "Shrinking the biologic world--nanobiotechnologies for toxicology," Toxicol. Sci. 74, 235-244 (2003).
  22. M. Kreiter, S. Mittler, W. Knoll, and J. R. Sambles, "Surface plasmon-related resonances on deep and asymmetric gold gratings," Phys. Rev. B 65, 125415 (2002).
  23. S. C. Kitson, W. L. Barnes, and J. R. Sambles, "Photoluminescence from dye molecules on silver gratings," Opt. Commun. 122, 147-154 (1996).
  24. M. Kreiter, T. Neumann, S. Mittler, W. Knoll, and J. R. Sambles, "Fluorescent dyes as a probe for the localized field of coupled surface plasmon-related resonances," Phys. Rev. B 64, 75406 (2001).
  25. A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, "Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance," Appl. Opt. 36, 6539-6547 (1997).
  26. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986).
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, Calif., 1985).
  28. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited