OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3262–3265

Fluorescence correlation microscopy with real-time alignment readout

Sanjeev Kumar Kaushalya, Jayaprakash Balaji, Kanchan Garai, and Sudipta Maiti  »View Author Affiliations


Applied Optics, Vol. 44, Issue 16, pp. 3262-3265 (2005)
http://dx.doi.org/10.1364/AO.44.003262


View Full Text Article

Enhanced HTML    Acrobat PDF (678 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In confocal fluorescence correlation microscopy (FCM) it is important to ensure that the correlation measurement is actually performed at the chosen location of the three-dimensional image of the specimen. We present a confocal FCM design that provides an automatic real-time readout of the location in the confocal microscopic image, which is aligned with the detector of the fluorescence correlation spectrometer. The design accomplishes this without using any special positioning device. The design is based on an apertured fluorescence detector placed close to the back aperture of the objective lens and can be easily incorporated into virtually any confocal microscope. We demonstrate the method by performing FCM measurements of a dye diffusing on a cell membrane.

© 2005 Optical Society of America

OCIS Codes
(170.1530) Medical optics and biotechnology : Cell analysis
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(180.1790) Microscopy : Confocal microscopy

History
Original Manuscript: July 12, 2004
Revised Manuscript: December 17, 2004
Manuscript Accepted: January 5, 2005
Published: June 1, 2005

Citation
Sanjeev Kumar Kaushalya, Jayaprakash Balaji, Kanchan Garai, and Sudipta Maiti, "Fluorescence correlation microscopy with real-time alignment readout," Appl. Opt. 44, 3262-3265 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-16-3262


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Magde, E. Elson, W. W. Webb, “Thermodynamic fluctuation in a reaction system — measurement by fluorescence correlation spectroscopy,” Phys. Rev. Lett. 29, 705–708 (1972) [CrossRef]
  2. E. Elson, D. Magde, “Fluorescence correlation spectroscopy: I. Conceptual basics and theory,” Biopolymers 13, 1–27 (1974). [CrossRef]
  3. D. Magde, E. Elson, W. W. Webb, “Fluorescence correlation spectroscopy: II. An experimental realization,” Biopolymers 13, 29–61 (1974). [CrossRef] [PubMed]
  4. S. Maiti, U. Haupts, W. W. Webb, “Fluorescence correlation spectroscopy: diagnostics for sparse molecules,” Proc. Natl. Acad. Sci. USA 94, 11753–11757 (1997).
  5. U. Haupts, S. Maiti, P. Schwille, W. W. Webb, “Dynamics of fluorescence fluctuations in green fluorescenct protein observed by fluorescence correlation spectroscopy,” Proc. Natl. Acad. Sci. USA 95, 13573–13578 (1998). [CrossRef]
  6. A. G. Palmer, N. L. Thompson, “Molecular aggregation characterized by high order autocorelation in fluorescence correlation spectroscopy,” Biophys. J. 52, 257–270 (1987).
  7. L. O. Tjernberg, A. Pramanik, S. Bjorling, P. Thyberg, J. Thyberg, C. Nordstedt, K. D. Berndt, L. Terenius, R. Rigler, “Amyloid beta-peptide polymerization studied using fluorescence correlation spectroscopy,” Chem. Biol. 6, 53–62 (1999). [CrossRef] [PubMed]
  8. P. Sengupta, K. Garai, B. Sahoo, Y. Shi, D. J. Callaway, S. Maiti, “The amyloid beta peptide [Abeta(1–40)] is thermodynamically soluble at physiological concentrations,” Biochemistry 42, 10506–10513 (2003). [CrossRef] [PubMed]
  9. E. L. Elson, J. Schlessinger, D. E. Koppel, D. Axelrod, W. W. Webb, “Measurement of lateral transport on cell surfaces,” Prog. Clin. Biol. Res. 9, 137–147 (1976). [PubMed]
  10. P. Schwille, U. Haupts, S. Maiti, W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
  11. P. Schwille, J. Korlach, W. W. Webb, “Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes,” Cytometry 36, 176–182 (1999). [CrossRef] [PubMed]
  12. D. Magde, W. W. Webb, E. L. Elson, “Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow,” Biopolymer 17, 361–376 (1978). [CrossRef]
  13. M. Brinkmeier, R. Rigler, “Flow analysis by means of fluorescence correlation spectroscopy,” Exp. Tech. Phys. 41, 205– 210 (1996).
  14. R. Brock, M. A. Hink, T. M. Jovin, “Fluorescence correlation microscopy of cells in the presence of autofluorescence,” Biophys. J. 75, 2547–2557 (1998).
  15. R. Brock, T. M. Jovin, “Fluorescence correlation microscopy (FCM): fluorescence correlation spectroscopy (FCS) in cell biology,” in Fluorescence Correlation Spectroscopy Theory and Applications. R. Rigler, E. S. Elson, eds. (Springer-Verlag, Berlin, 2001), p. 132–161. [CrossRef]
  16. E. L. Elson, “Fluorescence correlation spectroscopy measures molecular transport in cells,” Traffic 2, 789–796 (2001). [CrossRef] [PubMed]
  17. P. Sengupta, J. Balaji, S. Maiti, “Measuring diffusion in cell membranes by fluorescence correlation spectroscopy,” Methods 27, 374–387 (2002). [CrossRef] [PubMed]
  18. L. A. White, M. J. Eaton, M. C. Castro, K. J. Klose, M. Y. Globus, G. Shaw, S. R. Whittemore, “Distinct regulatory pathways control neurofilament expression and neurotransmitter synthesis in immortalized serotonergic neurons,” J Neurosci. 14, 6744–6753 (1994). [PubMed]
  19. P. Sengupta, K. Garai, J. Balaji, N. Periasamy, S. Maiti, “Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy,” Biophys. J. 84, 1977–1984 (2003).
  20. N. O. Petersen, “Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements,” Biophys. J. 49, 809–815 (1986).
  21. D. E. Koppel, F. Morgan, A. E. Cowan, J. H. Carson, “Scanning concentration correlation spectroscopy using the confocal laser microscope,” Biophys. J. 66, 502–507 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited