OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3302–3311

Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations

Claudio Scarchilli, Alberto Adriani, Francesco Cairo, Guido Di Donfrancesco, Carlo Buontempo, Marcel Snels, Maria Luisa Moriconi, Terry Deshler, Niels Larsen, Beiping Luo, Konrad Mauersberger, Joelle Ovarlez, Jim Rosen, and Jochen Schreiner  »View Author Affiliations

Applied Optics, Vol. 44, Issue 16, pp. 3302-3311 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1313 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new algorithm to infer structural parameters such as refractive index and asphericity of cloud particles has been developed by use of in situ observations taken by a laser backscattersonde and an optical particle counter during balloon stratospheric flights. All three main particles, liquid, ice, and a no-ice solid (NAT, nitric acid trihydrate) of polar stratospheric clouds, were observed during two winter flights performed from Kiruna, Sweden. The technique is based on use of the T-matrix code developed for aspherical particles to calculate the backscattering coefficient and particle depolarizing properties on the basis of size distribution and concentration measurements. The results of the calculations are compared with observations to estimated refractive indices and particle asphericity. The method has also been used in cases when the liquid and solid phases coexist with comparable influence on the optical behavior of the cloud to estimate refractive indices. The main results prove that the index of refraction for NAT particles is in the range of 1.37–1.45 at 532 nm. Such particles would be slightly prolate spheroids. The calculated refractive indices for liquid and ice particles are 1.51–1.55 and 1.31–1.33, respectively. The results for solid particles confirm previous measurements taken in Antarctica during 1992 and obtained by a comparison of lidar and optical particle counter data.

© 2005 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(290.3030) Scattering : Index measurements
(290.5820) Scattering : Scattering measurements
(290.5850) Scattering : Scattering, particles

Original Manuscript: March 19, 2004
Revised Manuscript: September 29, 2004
Manuscript Accepted: October 7, 2004
Published: June 1, 2005

Claudio Scarchilli, Alberto Adriani, Francesco Cairo, Guido Di Donfrancesco, Carlo Buontempo, Marcel Snels, Maria Luisa Moriconi, Terry Deshler, Niels Larsen, Beiping Luo, Konrad Mauersberger, Joelle Ovarlez, Jim Rosen, and Jochen Schreiner, "Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations," Appl. Opt. 44, 3302-3311 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. “WMO Annual report 2001,” (World Meteorological Organization, Geneva, Switzerland, 2002).
  2. A. R. Ravishankara, D. R. Hanson, “Differences in the reactivity of Type I polar stratospheric clouds depending on their phase,” J. Geophys. Res. 101 (D2), 3885–3890 (1996). [CrossRef]
  3. A. I. Carswell, “Lidar measurements of the atmosphere,” Can. J. Phys. 61, 378–395 (1993). [CrossRef]
  4. E. V. Browell, S. Ismail, A. F. Carter, N. S. Higdon, C. F. Butler, P. A. Robinette, O. B. Toon, M. R. Schoeberl, A. F. Tuck, “Airborne lidar observations in the wintertime arctic stratosphere: polar stratospheric clouds,” Geophys. Res. Lett. 17, 385–388 (1990). [CrossRef]
  5. F. Arnold, K. Petzoldt, E. Reimer, “On the formation and sedimentation of stratospheric nitric acid aerosols: implications for polar ozone destruction,” Geophys. Res. Lett. 19, 677–680 (1992). [CrossRef]
  6. K. S. Carslaw, B. P. Luo, S. L. Clegg, T. Peter, P. Brimblecombe, P. J. Crutzen, “Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles,” Geophys. Res. Lett. 21, 2479–2482 (1994). [CrossRef]
  7. A. Tabazadeh, R. P. Turco, K. Drdla, M. Z. Jacobson, O. B. Toon, “A study of Type I polar stratospheric cloud formation,” Geophys. Res. Lett. 21, 1619–1622 (1994). [CrossRef]
  8. P. J. Crutzen, F. Arnold, “Nitric acid cloud formation in the cold Antarctic stratosphere: a major cause for the springtime ozone hole,” Nature 324, 651–655 (1986). [CrossRef]
  9. O. B. Toon, P. Hamill, R. P. Turco, J. Pinto, “Condensation of HNO3 and HCl in the winter polar stratosphere,” Geophys. Res. Lett. 13, 1284–1287 (1986). [CrossRef]
  10. D. Hanson, K. Mauersberger, “Laboratory studies of the nitric acid tridydrate: implications for the South polar stratosphere,” Geophys. Res. Lett. 15, 855–858 (1988). [CrossRef]
  11. C. Voigt, J. Schreiner, A. Kohlmann, P. Zink, K. Mauersberger, N. Larsen, T. Deshler, C. Kröger, J. Rosen, A. Adriani, F. Cairo, G. Di Donfrancesco, M. Viterbini, J. Ovarlez, H. Ovarlez, C. David, A. Dörnbrack, “Nitric acid trihydrate in polar stratospheric clouds,” Science 290, 1756–1758 (2000). [CrossRef] [PubMed]
  12. M. I. Mishchenko, L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16–21 (1994). [CrossRef]
  13. M. I. Mishchenko, J. W. Hovenier, L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, San Diego, Calif., 1999), pp. 3–27.
  14. J. R. Bottiger, E. S. Fry, R. C. Thompson, “Phase matrix measurements for electromagnetic scattering by sphere aggregates,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, ed. (Plenum, New York, 1980), pp. 283–290. [CrossRef]
  15. A. Mugnai, W. J. Wiscombe, “Scattering from nonspherical Chebyshev particles. I: Cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction,” Appl. Opt. 25, 1235–1244 (1986). [CrossRef] [PubMed]
  16. P. C. Waterman, “Matrix formulation of electromagnetic scattering,” Proc. IEEE 53, 805–812 (1965). [CrossRef]
  17. M. I. Mishchenko, L. D. Travis, “Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers,” J. Quant. Spectrosc. Radiat. Transfer 60, 309–324 (1998). [CrossRef]
  18. T. Deshler, S. J. Oltmans, “Vertical profiles of volcanic aerosol and polar stratospheric clouds above Kiruna, Sweden: winter 1993 and 1995,” J. Atmos. Chem. 30, 11–23 (1998). [CrossRef]
  19. A. Adriani, F. Cairo, S. Mandolini, G. Di Donfrancesco, T. Deshler, B. Nardi, “A new joint balloon-borne experiment to study polar stratospheric clouds: laser backscattersonde and optical particle counter,” in Atmospheric Ozone, Proceedings of the XVIII Quadrennial Ozone Symposium, Vol. 2, R. D. Bojkov, G. Visconti, eds. (Edigrafital for Parco Scientifico e Tecnologico d’Abruzzo, 1998), pp. 879–882.
  20. J. M. Rosen, N. T. Kjome, “Backscattersonde: a new instrument for atmospheric aerosol research,” Appl. Opt. 30, 1552–1561 (1991). [CrossRef] [PubMed]
  21. T. Deshler, B. J. Johnson, W. R. Rozier, D. J. Hofmann, “Balloonborne measurements of the Pinatubo aerosol size distribution and volatility at Laramie, Wyoming during the summer of 1991,” Geophys. Res. Lett. 19, 199–202 (1992). [CrossRef]
  22. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981). [CrossRef] [PubMed]
  23. J. Biele, A. Tsias, B. P. Luo, K. S. Carslaw, R. Neuber, G. Beyerle, T. Peter, “Nonequilibrium coexistence of solid and liquid particles in Arctic stratospheric clouds,” J. Geophys. Res. 106 (D19), 22991–23008 (2001). [CrossRef]
  24. G. P. Gobbi, G. Di Donfrancesco, A. Adriani, “Physical properties of stratospheric clouds during the Antarctic winter of 1995,” J. Geophys. Res. 103 (D9), 10859–10874 (1998). [CrossRef]
  25. T. Deshler, N. Larsen, C. Weissner, J. Schreiner, K. Mauersberger, F. Cairo, A. Adriani, G. Di Donfrancesco, J. Ovarlez, H. Ovarlez, U. Blum, K. H. Fricke, A. Dörnbrack, “Large nitric acid particles at the top of an Arctic stratospheric cloud,” J. Geophys. Res. 108 (D16), 4517, doi: (2003). [CrossRef]
  26. T. Deshler, B. Nardi, A. Adriani, F. Cairo, G. Hansen, F. Fierli, A. Hauchecorne, L. Pulvirenti, “Determining the index of refraction of polar stratospheric clouds above Andoya (69 °N) by combining size-resolved concentration and optical scattering measurements,” J. Geophys. Res. 105 (D3), 3943–3954 (2000). [CrossRef]
  27. A. Adriani, T. Deshler, G. Di Donfrancesco, G. P. Gobbi, “Polar stratospheric clouds and volcanic aerosol during spring 1992 over McMurdo Station, Antarctica: lidar and particle counter comparisons,” J. Geophys. Res. 100 (D12), 25877–25898 (1995). [CrossRef]
  28. B. S. Berland, D. R. Haynes, K. L. Foster, M. A. Tolbert, S. M. George, O. B. Toon, “Refractive indices of amorphous and crystalline HNO3/H2O films representative of Polar Stratospheric Clouds,” J. Phys. Chem. 98, 4358–4364 (1994). [CrossRef]
  29. A. M. Middlebrook, B. S. Berland, S. M. George, M. A. Tolbert, O. B. Toon, “Real refractive indices of infrared-characterized nitric-acid/ice films: implications for optical measurements of polar stratospheric clouds,” J. Geophys. Res. 99 (D12), 25655–25666 (1994). [CrossRef]
  30. K. D. Beyer, A. R. Ravishankara, E. R. Lovejoy, “Measurements of UV refractive indices and densities of H2S2O4/H2O and H2S2O4/HNO3/H2O solutions,” J. Geophys. Res. 101 (D9), 14519–14524 (1996). [CrossRef]
  31. B. Luo, U. K. Krieger, T. Peter, “Densities and refractive indices of H2SO4/HNO3/H2O solutions to stratospheric temperatures,” Geophys. Res. Lett. 23, 3707–3710 (1996). [CrossRef]
  32. N. Larsen, I. S. Mikkelsen, B. M. Knudsen, J. Schreiner, C. Voigt, K. Mauersberger, J. M. Rosen, N. T. Kjome, “Comparison of chemical and optical in situ measurements of polar stratospheric cloud particles,” J. Geophys. Res. 105 (D1), 1491–1502 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited