OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3358–3363

Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths

Sanna Yliniemi, Brian R. West, and Seppo Honkanen  »View Author Affiliations

Applied Optics, Vol. 44, Issue 16, pp. 3358-3363 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical communications networks require integrated photonic components with negligible polarization dependence, which typically means that the waveguides must feature very low birefringence. Recent studies have shown that waveguides with low birefringence can be obtained, e.g., by use of silica-on-silicon waveguides or buried ion-exchanged glass waveguides. However, many integrated photonic circuits consist of waveguides with varying widths. Therefore low birefringence is consequently required for waveguides having different widths. This is a difficult task for most waveguide fabrication technologies. We present experimental results on waveguide birefringence for buried silver–sodium ion-exchanged glass waveguides. We show that the waveguide birefringence of the order of 10−6 for waveguide mask opening widths ranging from 2 to 10 µm can be obtained by postprocessing the sample through annealing at an elevated temperature. The measured values are in agreement with the values calculated with our modeling software for ion-exchanged glass waveguides. This unique feature of ion-exchanged waveguides may be of significant importance in a wide variety of integrated photonic circuits requiring polarization-independent operation.

© 2005 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7380) Optical devices : Waveguides, channeled
(260.1440) Physical optics : Birefringence

Original Manuscript: August 3, 2004
Manuscript Accepted: October 13, 2004
Published: June 1, 2005

Sanna Yliniemi, Brian R. West, and Seppo Honkanen, "Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths," Appl. Opt. 44, 3358-3363 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wildermuth, Ch. Nadler, M. Lanker, W. Hunziker, H. Melchior, “Penalty-free polarization compensation of SiO2/Si arrayed waveguide grating wavelength multiplexers using stress release grooves,” Electron. Lett. 34, 1661–1663 (1998). [CrossRef]
  2. C. K. Nadler, E. B. Wildermuth, M. Lanker, W. Hunziker, H. Melchior, “Polarization insensitive, low-loss, low-crosstalk wavelength multiplexer modules,” IEEE J. Sel. Top. Quantum Electron. 5, 1407–1412 (1999). [CrossRef]
  3. H. Takahashi, Y. Hibino, Y. Ohmori, M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photon. Technol. Lett. 5, 707–709 (1993). [CrossRef]
  4. M. Okuno, A. Sugita, K. Jinguji, M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitter/switch,” J. Lightwave Technol. 12, 625–633 (1994). [CrossRef]
  5. J. Albert, F. Bilodeau, D. C. Johnson, K. O. Hill, S. J. Mihailov, D. Stryckman, T. Kitagawa, Y. Hibino, “Polarisation-independent strong Bragg gratings in planar lightwave circuits,” Electron. Lett. 34, 485–486 (1998). [CrossRef]
  6. J. Canning, M. Åslund, “Compensation of birefringence within integrated optical components using a CO2 laser,” Electron. Lett. 35, 812–814 (1999). [CrossRef]
  7. H. Takahashi, Y. Hibino, I. Nishi, “Polarization-insensitive arrayed-waveguide grating wavelength multiplexer on silicon,” Opt. Lett. 17, 499–501 (1992). [CrossRef] [PubMed]
  8. D. F. Geraghty, D. Provenzano, M. Morrell, S. Honkanen, A. Yariv, N. Peyghambarian, “Ion-exchanged waveguide add/drop filter,” Electron. Lett. 37, 829–831 (2001). [CrossRef]
  9. P. Äyräs, G. Nunzi Conti, S. Honkanen, N. Peyghambarian, “Birefringence control for ion-exchanged channel glass waveguides,” Appl. Opt. 37, 8400–8405 (1998). [CrossRef]
  10. J. T. A. Carriere, J. A. Frantz, B. R. Youmans, S. Honkanen, R. K. Kostuk, “Measurement of waveguide birefringence using a ring resonator,” IEEE Photon. Technol. Lett. 16, 1134–1136 (2004). [CrossRef]
  11. V. Minier, D. Persegol, J. L. Lovato, A. Kévorkian, “Integrated optical current sensor with low-birefringence optical waveguides,” in Optical Fiber Sensors, Vol. 16 of OSA Technical Digest Series, Postconference Edition (Optical Society of America, Washington, D.C., 1997), pp. 104–107.
  12. V. Minier, D. Persegol, J. L. Lovato, G. Clauss, A. Kévorkian, “Low-birefringence optical waveguides for high performance magneto-optic current sensing,” in Digest of the Eighth European Conference on Integrated Optics (ECIO) (Optical Society of America, Washington, D.C., 1997), pp. 94–97.
  13. S. Yliniemi, B. R. West, T. Aalto, P. Madasamy, N. Peyghambarian, S. Honkanen, “Buried ion-exchanged glass waveguides featuring low birefringence with a broad range of waveguide widths,” in Integrated Optics and Photonic Integrated Circuits, G. C. Righini, S. Honkanen, eds., Proc. SPIE5451, 558–564 (2004). [CrossRef]
  14. K. Wörhoff, C. G. H. Roeloffzen, R. M. de Ridder, G. Segno, L. T. H. Hilderink, A. Driessen, “Tolerance of polarization independent waveguides for communication devices,” in Integrated Optics and Photonic Integrated Circuits, G. C. Righini, S. Honkanen, eds., Proc. SPIE5451, 369–380 (2004). [CrossRef]
  15. J. Albert, “Ion exchange from salt melts,” in Introduction to Glass Integrated Optics, S. I. Najafi, ed. (Artech House, Boston, Mass., 1992), pp. 7–38.
  16. A. Brandenburg, “Stress in ion-exchanged glass waveguides,” J. Lightwave Technol. LT-4, 1580–1593 (1986). [CrossRef]
  17. B. R. West, P. Madasamy, N. Peyghambarian, S. Honkanen, “Accurate modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2005). [CrossRef]
  18. D. W. Peaceman, H. H. Rachford, “The numerical solution of parabolic and elliptic differential equations,” J. Soc. Ind. Appl. Math. 3, 28–41 (1955). [CrossRef]
  19. C. M. Kim, R. V. Ramaswamy, “Modeling of graded-index channel waveguides using nonuniform finite difference method,” J. Lightwave Technol. 7, 1581–1589 (1989). [CrossRef]
  20. P. Madasamy, B. R. West, M. M. Morrell, D. F. Geraghty, S. Honkanen, N. Peyghambarian, “Buried ion-exchanged glass waveguides: burial depth dependence on the waveguide width,” Opt. Lett. 28, 1132–1134 (2003). [CrossRef] [PubMed]
  21. W. Lukosz, C. Stamm, “Integrated optical interferometer as relative humidity sensor and differential refractometer,” Sens. Actuators A 25, 185–188 (1991). [CrossRef]
  22. A. Yariv, Optical Electronics in Modern Communications, 2nd. ed. (Oxford U. Press, New York, 1997), pp. 17–29.
  23. W. J. Wang, S. Honkanen, S. I. Najafi, A. Tervonen, “Loss characteristics of potassium and silver double-ion-exchanged glass waveguides,” J. Appl. Phys. 74, 1529–1533 (1993). [CrossRef]
  24. H. Ou, “Different index contrast silica-on-silicon waveguides by PECVD,” Electron. Lett. 39, 212–213 (2003). [CrossRef]
  25. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, W. Wischmann, “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FDH) through tailoring of the overcladding,” J. Lightwave Technol. 18, 193–198 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited