OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 16 — Jun. 1, 2005
  • pp: 3370–3376

Narrow resonances and ripple fluctuations in light scattering by a spheroid

André G. Simão, José P. R. F. de Mendonça, Rosana B. Santiago, Pedro C. G. de Moraes, Paulo C. Soares, and Luiz G. Guimarães  »View Author Affiliations

Applied Optics, Vol. 44, Issue 16, pp. 3370-3376 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a semiclassical theory to explain the rapid ripple fluctuations in the extinction efficiency of light scattering by a transparent prolate spheroid. The theory is based on uniform asymptotic expansion of spheroidal radial functions. We have calculated the extinction efficiency for normal and oblique incidence. Our results suggest that the excitation of resonant electromagnetic modes inside a spheroidal particle is an important factor in the ripple structure. To verify this assumption and based on a Breit–Wigner formula, we develop a method to fit the peaks that appear in the spheroid’s extinction cross section when some scattering parameters vary. In other words, our calculations suggest that narrow resonances are related to ripple fluctuations, whereas broad resonances contribute to extinction cross-sectional background.

© 2005 Optical Society of America

OCIS Codes
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles

Original Manuscript: September 29, 2004
Revised Manuscript: January 4, 2005
Manuscript Accepted: January 11, 2005
Published: June 1, 2005

André G. Simão, José P. R. F. de Mendonça, Rosana B. Santiago, Pedro C. G. de Moraes, Paulo C. Soares, and Luiz G. Guimarães, "Narrow resonances and ripple fluctuations in light scattering by a spheroid," Appl. Opt. 44, 3370-3376 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Asano, G. Yamamoto, “Light scattering by a spheroidal particle,” Appl. Opt. 14, 29–49 (1975). [CrossRef] [PubMed]
  2. S. Asano, “Light-scattering properties of spheroidal particles,” Appl. Opt. 18, 712–723 (1979). [CrossRef] [PubMed]
  3. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  4. L. G. Guimarães, H. M. Nussenzveig, “Theory of Mie resonances and ripple fluctuations,” Opt. Commun. 89, 363–369 (1992). [CrossRef]
  5. H. M. Nussenzveig, “Light tunneling in clouds,” Appl. Opt. 42, 1588–1593 (2003). [CrossRef] [PubMed]
  6. V. A. Markel, V. M. Shalaev, “Absorption of light by soot particles in micro-droplets of water,” J. Quant. Spectrosc. Radiat. Transfer 63, 321–339 (1999). [CrossRef]
  7. V. A. Markel, V. M. Shalaev, “Absorption of light by soot particles in micro-droplets of water: erratum,” J. Quant. Spectrosc. Radiat. Transfer 66, 591 (2000). [CrossRef]
  8. V. A. Markel, “The effects of averaging on the enhancement factor for absorption of light by carbon particles in microdroplets of water,” J. Quant. Spectrosc. Radiat. Transfer 72, 765–774 (2002). [CrossRef]
  9. P. Chýlek, G. Videen, D. Ngo, R. G. Pinnick, J. D. Klett, “Effect of black carbon on the optical properties and climate forcing of sulfate aerosols,” J. Geophys. Res. Atmos. 100, 16,325–16,332 (1995). [CrossRef]
  10. A. Kokhanovsky, “Optical properties of terrestrial clouds,” Earth Sci. Rev. 64, 189–241 (2004). [CrossRef]
  11. S. M. Spillane, T. J. Kippenberg, K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002). [CrossRef] [PubMed]
  12. M. Cai, O. Painter, K. J. Vahala, P. C. Sercel, “Fiber-coupled microsphere laser,” Opt. Lett. 25, 1430–1432 (2000). [CrossRef]
  13. P. C. G. de Moraes, L. G. Guimarães, “Semiclassical theory to optical resonant modes of a transparent dielectric spheroidal cavity,” Appl. Opt. 41, 2955–2961 (2002). [CrossRef] [PubMed]
  14. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, S. C. Hill, “Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990). [CrossRef] [PubMed]
  15. M. L. Gorodetsky, V. S. Ilchenko, “High-Q optical whispering gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun. 113, 133–143 (1994). [CrossRef]
  16. N. V. Voshchinnikov, V. G. Farafonov, “Optical-properties of spheroidal particles,” Astrophys. Space Sci. 204, 19–86 (1993). [CrossRef]
  17. P. T. Leung, S. W. Ng, K. M. Pang, K. M. Lee, “Morphology-dependent resonances in dielectric spheres with many tiny inclusions,” Opt. Lett. 27, 1749–1751 (2002). [CrossRef]
  18. M. L. Goldberger, K. M. Watson, Collision Theory (Wiley, New York, 1964).
  19. M. I. Mishchenko, A. A. Lacis, “Morphology-dependent resonances of nearly spherical particles in random orientation,” Appl. Opt. 42, 5551–5556 (2003). [CrossRef] [PubMed]
  20. J. A. Lock, “Excitation of morphology-dependent resonances and van de Hulst’s localization principle,” Opt. Lett. 24, 427–429 (1999). [CrossRef]
  21. A. G. Simão, L. G. Guimarães, G. Videen, “A comparative study in resonant light scattering between spherical and cylindrical dielectric hosts with a metallic inclusion,” J. Quant. Spectrosc. Radiat. Transfer 70, 777–786 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited