OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 17 — Jun. 10, 2005
  • pp: 3499–3509

Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing

Svetlana V. Samoilova, Yurii S. Balin, Margarita M. Krekova, and David M. Winker  »View Author Affiliations


Applied Optics, Vol. 44, Issue 17, pp. 3499-3509 (2005)
http://dx.doi.org/10.1364/AO.44.003499


View Full Text Article

Acrobat PDF (1339 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Inversion of polarization lidar sensing data based on the form of the lidar sensing equation with allowance for contributions from multiple-scattering calls for a priori information on the scattering phase matrix. In the present study the parameters of the Stokes vectors for various propagation media, including those with the scattering phase matrices that vary along the measuring range, are investigated. It is demonstrated that, in spaceborne lidar sensing, a simple parameterization of the multiple-scattering contribution is applicable and the polarization signal's characteristics depend mainly on the lidar and depolarization ratios, whereas differences in the angular dependences of the matrix components are no longer determining factors. An algorithm for simultaneous reconstruction of the profiles of the backscattering coefficient and depolarization and lidar ratios in an inhomogeneous medium is suggested. Specific features of the methods are analyzed for the examples of interpretation of lidar signal profiles calculated by the Monte Carlo method and are measured experimentally.

© 2005 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(010.3640) Atmospheric and oceanic optics : Lidar
(280.1310) Remote sensing and sensors : Atmospheric scattering
(290.4210) Scattering : Multiple scattering

Citation
Svetlana V. Samoilova, Yurii S. Balin, Margarita M. Krekova, and David M. Winker, "Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing," Appl. Opt. 44, 3499-3509 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-17-3499


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
  2. V. Noel, H. Chepfer, G. Leganois, A. Delafal, and P. H. Flamant, "Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio," Appl. Opt. 41, 4245-4257 (2002).
  3. M. A. Vaughan, "SIBIL: a selective iterated boundary location algorithm for finding cloud and aerosol layers in CALIPSO lidar data," in Lidar Remote Sensing in Atmospheric and Earth Sciences: Proceedings of the 21st ILRS, L. Bissonnette, G. Roy, and G. Vallee, eds. (Defense R&D Canada-Valcarier, Quebec, Canada, 2002), pp. 739-742.
  4. S. A. Young, "The hybrid extinction retrieval algorithms (HERA) for analysis of lidar data from space," CSIRO Atmospheric Research Tech. Pap. N54, 3-28 (Commonwealth Scientific and Industrial Research Organisation, Collingwood, Victoria, Australia, 2002).
  5. B. V. Kaul, S. N. Volkov, and I. V. Samokhvalov, "Study of crystal clouds through lidar measurements of backscattering matrices," Atm. Ocean. Opt. 16, 354-361 (2003).
  6. S. R. Pal and A. I. Carswell, "Polarization anisotropy in lidar multiple scattering from atmospheric clouds," Appl. Opt. 24, 3464-3471 (1985).
  7. O. Toon, E. V. Broweel, S. Kinne, and J. Jordan, "Analysis of lidar observation of polar stratospheric clouds," Geophys. Res. Lett. 17, 393-396 (1990).
  8. S. V. Samoilova, "Method for reconstruction of optical parameters of the atmosphere from the data of sounding by a polarization lidar. 1. Problems of a priori uncertainty in calibration of signals and solutions," Atm. Ocean. Opt. 16, 903-912 (2003).
  9. A. P. Vasil'kov, Yu. A. Gol'din, and B. A. Gureev, "Airborne lidar polarization estimation of the vertical profile of seawater light scattering coefficient," Izv. Atm. Ocean. Phys. 33, 563-569 (1997).
  10. S. V. Samoilova and Yu. S. Balin, "Retrieval of cloud cover optical characteristics from data obtained with spaceborne polarization lidar," Izv. Atm. Ocean. Phys. 37, 201-212 (2001).
  11. S. V. Samoilova, "An approximate equation for multiple scattering of spaceborne lidar returns and its application of extinction and depolarization," in Lidar Multiple Scattering Experiment, Ch. Werner, U. G. Oppel, and T. Rother, eds., Proc. SPIE 5059, 106-115 (2003).
  12. S. S. Khmelevtsov, Yu. G. Kaufman, V. A. Korshunov, E. D. Svetogorov, and A. S. Khmelevtsov, "Laser sounding of atmospheric parameters at Obninsk lidar station of SPA "Typhoon,'" in Some Problems of Atmospheric Physics (collected papers) (Gidrometeoizdat, St. Peterburg, Russia, 1998), pp. 358-393.
  13. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  14. O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Crystal Clouds (Gidrometeoizdat, Leningrad, 1984).
  15. F. Cairo, G. Di Donfrancesco, A. Adriani, L. Pulvirenti, and F. Fierli, "Comparison of various linear depolarization parameters measured by lidar," Appl. Opt. 38, 4425-4432 (1999).
  16. J. D. Klett, "Lidar inversion with variable backscatter/extinction ratios," Appl. Opt. 24, 1638-1643 (1985).
  17. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 1609-1613 (1984).
  18. V. A. Kovalev, "Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios," Appl. Opt. 32, 6053-6065 (1993).
  19. S. V. Samoilova, Yu. S. Balin, and A. D. Ershov, "Stable procedure for retrieval of optical characteristics of aerosol from combination lidar sounding data," Izv. Atm. Ocean. Phys. 39, 395-404 (2003).
  20. E. P. Zege, I. L. Katsev, and I. N. Polonsky, "Analytical solution to lidar return signals from clouds with regard to multiple scattering," Appl. Phys. B 60, 345-353 (1995).
  21. G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, and W. Renger, "The influence of multiple scattering of lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient," Beitr. Phys. Atmos. 70, 93-105 (1997).
  22. Yu. S. Balin, S. V. Samoilova, M. M. Krekova, and D. M. Winker, "Retrieval of cloud optical parameters from space-based backscatter lidar data," Appl. Opt. 38, 6365-6373 (1999).
  23. U. G. Oppel, "A hierarchy of models for lidar multiple scattering and its applications for simulation and analysis of spaceborne lidar returns," in Atmospheric and Ocean Optics, G. G. Matvienko and M. V. Panchenko, eds., Proc. SPIE 4341, 237-250 (2000).
  24. L. R. Bissonette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaak, "Multiple-scattering lidar retrieval method: tests of Monte Carlo simulations and comparisons with in situ measurements," Appl. Opt. 41, 6307-6324 (2002).
  25. I. V. Samokhvalov, "Double scattering approximation of lidar equation for inhomogeneous atmosphere," Opt. Lett. 4, 12-14 (1979).
  26. C. M. R. Platt, "Lidar and radiometric observations of cirrus clouds," J. Atmos. Sci. 30, 1191-1204 (1973).
  27. C. M. R. Platt, "Remote sounding of high cirrus clouds. III. Monte-Carlo calculations of multiple-scattered lidar returns," J. Atmos. Sci. 38, 156-167 (1981).
  28. D. M. Winker, "Accounting for multiple scattering in retrievals from space lidar," in Lidar Multiple Scattering Experiment, Ch. Werner, U. G. Oppel, and T. Rother, eds., Proc. SPIE 5059, 128-139 (2003).
  29. D. M. Winker, J. Pelon, and M. P. McCormick, "The CALIPSO mission: spaseborne lidar for observations of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Zh. Liu, eds., Proc. SPIE 4893, 1-11 (2003).
  30. D. N. Romashov, "Backscattering matrix for monodisperse ensembles of hexagonal ice crystals," Atm. Ocean. Opt. 12, 392-400 (1999).
  31. D. N. Romashov, "Light scattering by hexagonal ice crystals," Atm. Ocean. Opt. 14, 116-124 (2001).
  32. A. Ansmann, M. Reibessel, and C. Weitcamp, "Measurements of atmospheric aerosol extinction profiles with a Raman lidar," Opt. Lett. 15, 746-748 (1990).
  33. A. Ansmann, U. Wandinger, M. Reibessel, C. Weitcamp, and M. Michaelis, "Independent measurements of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992).
  34. G. I. Marchuk, G. M. Mikhailov, T. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and E. P. Elepov, "Monte Carlo algorithms for solving nonstationary problems on propagation of narrow light beams in the atmosphere and ocean," in Monte-Carlo Methods in Atmospheric Optics, G.I.Marchuk, ed. (Springer-Verlag, Berlin, 1980), Chap. 5.
  35. G. M. Krekov, M. M. Krekova, and V. S. Shamanaev, "Laser sensing of a subsurface oceanic layer. I. Effect of atmosphere and wind-driven sea waves," Appl. Opt. 37, 1589-1595 (1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited