OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 17 — Jun. 10, 2005
  • pp: 3520–3526

High-efficiency aerosol scatterometer that uses an integrating sphere for the calibration of multiwavelength lidar data

Shunsuke Fukagawa, Hiroaki Kuze, Nofel Lagrosas, and Nobuo Takeuchi  »View Author Affiliations

Applied Optics, Vol. 44, Issue 17, pp. 3520-3526 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the purpose of calibrating multiwavelength lidar data, we developed a scatterometer to measure the aerosol scattering coefficient at the ground level. The system is based on an integrating sphere, cw lasers (532 and 633 nm), and a controlled flow of the ambient air, including aerosol particles. The simulation study and experimental results indicate that the detection efficiency of this instrument is approximately 10%–40% better than that of an integrating nephelometer, because of the wider acceptance angle of the scattered light. The scattering coefficients measured at the two wavelengths, as well as the resulting value of the angstrom exponent, show good correlation with the results simultaneously measured with an integrating nephelometer and an optical particle counter.

© 2005 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.3640) Atmospheric and oceanic optics : Lidar

Original Manuscript: December 3, 2004
Revised Manuscript: February 2, 2005
Manuscript Accepted: February 3, 2005
Published: June 10, 2005

Shunsuke Fukagawa, Hiroaki Kuze, Nofel Lagrosas, and Nobuo Takeuchi, "High-efficiency aerosol scatterometer that uses an integrating sphere for the calibration of multiwavelength lidar data," Appl. Opt. 44, 3520-3526 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Kinjo, H. Kuze, Y. Sakurada, N. Takeuchi, “Calibration of the lidar measurement of tropospheric aerosol extinction coefficients,” Jpn. J. Appl. Phys. 38, 293–297 (1999). [CrossRef]
  2. P. Piironen, E. W. Eloranta, “Determination of a high-spectral-resolution-lidar based on an iodine absorption filter,” Opt. Lett. 19, 234–236 (1994). [CrossRef]
  3. A. Ansmann, M. Riebesell, U. Wandinger, C. Weit-kamp, E. Voss, W. Lahmann, W. Michaelis, “Combined Raman elastic-backscatter LIDAR for vertical profiling of moisture, aerosol extinction, backscatter, and LIDAR ratio,” Appl. Phys. B55, 18–28 (1992). [CrossRef]
  4. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984). [CrossRef] [PubMed]
  5. S. J. Doherty, T. L. Anderson, R. J. Charlson, “Measurement of the lidar ratio for atmospheric aerosols with a 180° backscattering nephelometer,” Appl. Opt. 38, 1823–1832 (1999). [CrossRef]
  6. V. A. Kovalev, “Stable near-end solution of the lidar equation for clear atmosphere,” Appl. Opt. 42, 585–591 (2003). [CrossRef] [PubMed]
  7. S. Fukagawa, H. Kuze, N. Lagrosas, N. Takeuchi, “Development of an aerosol scatterometer using an integrating sphere for lidar data calibration,” in Proceedings of the 22nd International Laser Radar Conference, G. Pappalardo, A. Amodeo, eds.(European Space Agency, Noordwijk, The Netherlands, 2004), pp. 283–286.
  8. Labsphere Inc., “Technical information—a guide to integrating sphere theory and applications,” (Labsphere, Inc., North Sutton, N.H., 14April2005), http://www.labsphere.com/ .
  9. A. Petzold, M. Schönlinner, “Multi-angle absorption photometry—a new method for the measurement of aerosol light absorption and atmospheric black carbon,” Aerosol Sci. 35, 421–441 (2004). [CrossRef]
  10. G. Myhre, F. Stordal, K. Restad, I. S. A. Isaksen, “Estimation of the direct radiative forcing due to sulfate and soot aerosols,” Tellus 50B, 463–477 (1998). [CrossRef]
  11. M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73–97 (2003). [CrossRef]
  12. P. K. Quinn, T. S. Bates, D. J. Coffman, T. L. Miller, J. E. Johnson, D. S. Covert, J. P. Putaud, C. Neusus, T. Novakov, “A comparison of aerosol chemical and optical properties from the 1st and 2nd Aerosol Characterization Experiments,” Tellus 52B, 239–257 (2000). [CrossRef]
  13. J. M. Rosen, R. G. Pinnick, D. M. Garvey, “Nephelometer optical response model for the interpretation of atmospheric aerosol measurements,” Appl. Opt. 36, 2642–2649 (1997). [CrossRef] [PubMed]
  14. T. L. Anderson, D. S. Covert, S. F. Marshall, M. L. Laucks, R. J. Charlson, R. A. Ogren, R. Caldow, R. L. Holm, F. R. Quant, G. J. Sem, A. Wiedensohler, N. A. Ahlquist, T. S. Bates, “Performance characteristics of a high-sensitivity three-wavelength, total scatter/backscatter nephelometer,” J. Atmos. Ocean. Technol. 13, 967–986 (1996). [CrossRef]
  15. C. E. Junge, “The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere,” J. Meteorol. 12, 13–15 (1955). [CrossRef]
  16. R. Penndorf, “Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 μ and their application to atmospheric optics,” J. Opt. Soc. Am. 47, 176–182 (1957). [CrossRef]
  17. B. Edlen, “Dispersion of standard air,” J. Opt. Soc. Am. 43, 339–344 (1953). [CrossRef]
  18. E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles, 1st ed. (Wiley, New York, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited