OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 17 — Jun. 10, 2005
  • pp: 3552–3559

Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation

Katsuhiko Hirabayashi  »View Author Affiliations


Applied Optics, Vol. 44, Issue 17, pp. 3552-3559 (2005)
http://dx.doi.org/10.1364/AO.44.003552


View Full Text Article

Enhanced HTML    Acrobat PDF (1604 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Liquid-crystal- (LC-) based rotatable wave plates exhibiting phase retardation that is electrically controllable through more than 2π and rotatable azimuthal orientation of the optical axis have been achieved. One outer surface of the LC cell is coated with a transparent electrode; this controls the phase retardation. A single wave plate of this type is shown to be capable of converting an arbitrary input polarization to any desired polarization, and its applicability to feedback polarization control is demonstrated.

© 2005 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(230.4320) Optical devices : Nonlinear optical devices

History
Original Manuscript: May 18, 2004
Revised Manuscript: July 20, 2004
Manuscript Accepted: July 20, 2004
Published: June 10, 2005

Citation
Katsuhiko Hirabayashi, "Electrically controllable liquid-crystal rotatable wave plate with variable phase retardation," Appl. Opt. 44, 3552-3559 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-17-3552


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ohkoshi, “Polarization-state control schemes for heterodyne or homodyne optical fiber communications,” J. Lightwave Technol. LT-3, 1232–1237 (1985). [CrossRef]
  2. D. A. Watley, K. S. Farley, B. J. Shaw, W. S. Lee, G. Bordogna, A. P. Hadjifotiou, R. E. Epworth, “Compensation of polarization-mode dispersion exceeding one bit period using single high-birefringence fibre,” Electron. Lett. 35, 1094–1095 (1999). [CrossRef]
  3. T. Takahashi, T. Imai, M. Aiki, “Automatic compensation technique for time-wise fluctuating polarization mode dispersion in in-line amplifier systems,” Electron. Lett. 30, 348–349 (1994). [CrossRef]
  4. T. Ito, K. Fukuchi, K. Sekiya, D. Ogasahara, R. Ohhira, T. Ono, “6.4 Tb/s (160 × 40 Gb/s) WDM transmission experiment with 0.8 bit/Hz spectral efficiency,” presented at the 26th European Conference on Optical Communication (ECOC 2000), Munich, Germany, 3–7 September 2000.
  5. N. G. Walker, G. R. Walker, “Polarization control for coherent communications,” J. Lightwave Technol. 8, 438–458 (1990). [CrossRef]
  6. H. Shimizu, S. Yamazaki, T. Ono, K. Emura, “Highly practical fiber squeezer polarization controller,” J. Lightwave Technol. 9, 1217–1223 (1991). [CrossRef]
  7. S. H. Rumbaugh, M. D. Jones, L. W. Casperson, “Polarization control for coherent fiber-optic system using nematic liquid crystals,” J. Lightwave Technol. 8, 459–465 (1990). [CrossRef]
  8. K. Hirabayashi, C. Amano, “Feed-forward continuous and complete polarization control with a PLZT rotatable-variable waveplate and in-line polarimeter,” J. Lightwave Technol. 21, 1920–1932 (2003). [CrossRef]
  9. K. Hirabayashi, C. Amano, “Liquid-crystal polarization stabilizers on fiber arrays,” J. Lightwave Technol. 21, 2162–2171 (2003). [CrossRef]
  10. T. Chiba, Y. Ohtera, S. Kawakami, “Polarization stabilizer using liquid crystal rotatable waveplates,” J. Lightwave. Technol. 17, 885–890 (1999). [CrossRef]
  11. L. Dupont, J. L. de Bougrenetde de la Tocnaye, M. Le Gall, D. Penninckx, “Principle of a compact polarisation mode dispersion controller using homeotropic electroclinic liquid crystal confined single mode fibre devices,” Opt. Commun. 176, 113–119 (2000). [CrossRef]
  12. M. Kawamura, S. Taguchi, S. Sato, “Electro-optical properties of liquid-crystal polarization-control devices,” presented at the annual meeting of the Japanese Liquid Crystal Society, Omiya Sonic City, Saitama, Japan, 25–27 September2001.
  13. Y. Ohtera, T. Chiba, S. Kawakami, “Liquid crystal rotatable waveplates,” IEEE Photon. Technol. Lett. 8, 390–392 (1996). [CrossRef]
  14. B. R. Acharya, L. Moller, K. W. Baldwin, R. A. MacHarrie, R. A. Stepnoski, C. C. Huang, R. Pindak, J. A. Rogers, “In-line liquid-crystal microcell wave plates and their application for high-speed, reset-free polarization mode dispersion compensation in 40-Gbit/s systems,” Appl. Opt. 42, 5407–5412 (2003). [CrossRef] [PubMed]
  15. K. Hirabayashi, C. Amano, “A compact in-line polarimeter using a Faraday rotator,” IEEE Photon. Technol. Lett. 15, 1740–1742 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited