OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 18 — Jun. 20, 2005
  • pp: 3675–3685

Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers

Johan Hult, Iain S. Burns, and Clemens F. Kaminski  »View Author Affiliations

Applied Optics, Vol. 44, Issue 18, pp. 3675-3685 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new approach for extended-cavity diode-laser tuning to achieve wide mode-hop-free tuning ranges. By using a multiple piezoactuated grating mount, the cavity length and grating angle in the laser can be adjusted independently, allowing mode-hop-free tuning without the need for a mechanically optimized pivot-point mount. Furthermore, synchronized diode injection-current tuning allows diode lasers without antireflection coatings to be employed. In combination these two techniques make the construction of a cheap, efficient, and easily optimized extended-cavity diode laser possible. A theoretical analysis is presented for optimal control of piezoactuator displacements and injection current to achieve the widest possible mode-hop-free tuning ranges, and a comparison is made with measurements. The scheme is demonstrated for blue and violet GaN lasers operating at ∼450 nm and ∼410 nm, for which continuous tuning ranges exceeding 90 GHz have been achieved. Examples of applications of these lasers are also given.

© 2005 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(140.2020) Lasers and laser optics : Diode lasers
(140.3600) Lasers and laser optics : Lasers, tunable

Original Manuscript: October 6, 2004
Manuscript Accepted: January 20, 2005
Published: June 20, 2005

Johan Hult, Iain S. Burns, and Clemens F. Kaminski, "Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers," Appl. Opt. 44, 3675-3685 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  2. D. Sesko, C. G. Fan, C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B 5, 1225–1227 (1988). [CrossRef]
  3. P. W. Werle, P. Mazzinghi, F. D’Amato, M. De Rosa, K. Maurer, F. Slemr, “Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy,” Spectrochim. Acta A 60, 1685–1705 (2004). [CrossRef]
  4. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert, “Diode laser based in-situ detection of alkali atoms: development of a new method for determination of residence-time distribution in combustion plants,” Appl. Phys. B 75, 237–247 (2002). [CrossRef]
  5. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998). [CrossRef]
  6. S. Nakamura, “The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes,” Science 281, 956–961 (1998). [CrossRef]
  7. S. Nagahama, T. Yanamoto, M. Sano, T. Mukai, “Characteristics of laser diodes composed of GaN-based semiconductor,” Phys. Stat. Sol. A 190, 235–246 (2002). [CrossRef]
  8. K. B. MacAdam, A. Steinbach, C. E. Wieman, “A narrowband tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992). [CrossRef]
  9. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T. W. Hänsch, “A compact grating-stabilized diode-laser system for atomic physics,” Opt. Commun. 117, 541–549 (1995). [CrossRef]
  10. G.-Y. Yan, A. L. Schawlow, “Measurement of diode laser characteristics affecting tunability with an external grating,” J. Opt. Soc. Am. B 9, 2122–2127 (1992). [CrossRef]
  11. F. Favre, D. Le Guen, J. C. Simon, B. Landousies, “External-cavity semiconductor laser with 15 nm continuous tuning range,” Electron. Lett. 21, 795–796 (1986). [CrossRef]
  12. M. de Labachelerie, G. Passedat, “Mode-hop suppression of littrow grating-tuned lasers,” Appl. Opt. 32, 269–274 (1993). [CrossRef] [PubMed]
  13. J. Mellis, S. A. Al-Chalabi, K. H. Cameron, R. Wyatt, J. C. Regnault, W. J. Devlin, M. C. Brain, “Miniature packaged external-cavity semiconductor-laser with 50-GHz continuous electrical tuning range,” Electron. Lett. 24, 988–989 (1988). [CrossRef]
  14. T. Laurila, T. Joutsenoja, R. Hernberg, M. Kuittinen, “Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating,” Appl. Opt. 41, 5632–5637 (2002). [CrossRef] [PubMed]
  15. M. G. Boshier, D. Berkeland, E. A. Hinds, V. Sandoghdar, “External-cavity frequency stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy,” Opt. Commun. 85, 355–359 (1991). [CrossRef]
  16. L. Hildebrandt, R. Knispel, S. Stry, J. R. Sacher, F. Schael, “Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy,” Appl. Opt. 42, 2110–2118 (2003). [CrossRef] [PubMed]
  17. C. Petridis, I. D. Lindsay, D. J. M. Stothard, M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001). [CrossRef]
  18. R. S. Conroy, J. J. Hewett, G. P. T. Lancaster, W. Sibbett, J. W. Allen, K. Dholakia, “Characterisation of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000). [CrossRef]
  19. H. Leinen, D. Gläßner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, “GaN blue diode lasers: a spectroscopist’s view,” Appl. Phys B 70, 567–571 (2000). [CrossRef]
  20. U. Gustafsson, J. Alnis, S. Svanberg, “Atomic spectroscopy with violet laser diodes,” Am. J. Phys. 68, 660–664 (2000). [CrossRef]
  21. W. R. Trutna, L. F. Stokes, “Continuously tuned external-cavity semiconductor-laser,” J. Lightwave Technol. 11, 1279–1286 (1993). [CrossRef]
  22. L. Hildebrandt, Sacher Lasertechnik Group, Hannah Arendt Strasse 3–7, D-35037 Marburg, Germany (personal communication, 2004).
  23. C. J. Hawthorn, K. P. Webber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001). [CrossRef]
  24. U. Tisch, B. Meyler, O. Katz, E. Finkman, J. Salzman, “Dependence of the refractive index of AlxGa1−xN on temperature and composition at elevated temperatures,” J. Appl. Phys. 89, 2676–2685 (2001). [CrossRef]
  25. H. X. Jiang, J. Y. Lin, “Mode spacing “anomaly” in InGaN blue lasers,” Appl. Phys. Letters 74, 1066–1068 (1999). [CrossRef]
  26. B. Boggs, C. Greiner, T. Wang, H. Lin, T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23, 1906–1908 (1998). [CrossRef]
  27. J. Cariou, P. Luc, Atlas du Spectre d’Absorption de la Molecule Tellure (Laboratoire Aimé-Cotton, CNRS II, Orsay, France, 1980).
  28. J. Hult, I. S. Burns, C. F. Kaminski, “Two-line atomic fluorescence thermometry using diode lasers,” Proc. Combust. Inst. 30, 1535–1543 (2005). [CrossRef]
  29. I. S. Burns, J. Hult, C. F. Kaminski, “Spectroscopic use of a novel blue diode laser in a wavelength region around 450 nm,” Appl. Phys. B. 79, 491–495 (2004). [CrossRef]
  30. J. Hult, I. S. Burns, C. F. Kaminski, “Measurements of the indium hyperfine structure in an atmospheric-pressure flame by use of diode-laser-induced fluorescence,” Opt. Lett. 29, 827–829 (2004). [CrossRef] [PubMed]
  31. J. E. Dec, J. O. Keller, “High speed thermometry using two-line atomic fluorescence,” Proc. Combust. Inst. 21, 1737–1745 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited