OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 18 — Jun. 20, 2005
  • pp: 3716–3724

Brewster angle with a negative-index material

Ceji Fu, Zhuomin M. Zhang, and Phillip N. First  »View Author Affiliations

Applied Optics, Vol. 44, Issue 18, pp. 3716-3724 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (203 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The demonstration and confirmation of metamaterials with simultaneous negative permittivity and permeability, and thus a negative refractive index, has resulted in a surge of interest in the reflection and refraction phenomena at the interfaces of these so-called negative-index materials (NIMs). We present a systematic study of the Brewster angle, i.e., the angle of incidence at which no reflection occurs, for both TE and TM waves scattering at the interface between two semi-infinite planar media, one of which may be a NIM. Detailed physical explanations that account for the Brewster angle for a plane wave incident upon a NIM are provided under the framework of the Ewald–Oseen extinction theorem, considering the re-emission of induced electric and magnetic dipoles. The conditions under which the Brewster angle exists are concisely summarized in a map of different material parameter regimes.

© 2005 Optical Society of America

OCIS Codes
(120.5700) Instrumentation, measurement, and metrology : Reflection
(160.4760) Materials : Optical properties
(260.5430) Physical optics : Polarization

Original Manuscript: October 5, 2004
Revised Manuscript: February 14, 2005
Manuscript Accepted: February 16, 2005
Published: June 20, 2005

Ceji Fu, Zhuomin M. Zhang, and Phillip N. First, "Brewster angle with a negative-index material," Appl. Opt. 44, 3716-3724 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef] [PubMed]
  3. R. W. Ziolkowski, E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64, 056625 (2001). [CrossRef]
  4. J. Pacheco, T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, J. A. Kong, “Power propagation in homogeneous isotropic frequency-dispersive left-handed media,” Phys. Rev. Lett. 89, 257401 (2002). [CrossRef] [PubMed]
  5. A. A. Houck, J. B. Brock, I. L. Chuang, “Experimental observations of a left-handed material that obeys Snell’s law,” Phys. Rev. Lett. 90, 137401 (2003). [CrossRef]
  6. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, “Experimental verification and simulation of negative index of refraction using Snell’s law,” Phys. Rev. Lett. 90, 107401 (2003). [CrossRef]
  7. S. Foteinopoulou, E. N. Economou, C. M. Soukoulis, “Refraction in media with a negative refractive index,” Phys. Rev. Lett. 90, 107402 (2003). [CrossRef] [PubMed]
  8. P. V. Parimi, W. T. Lu, P. Vodo, S. Sridhar, “Imaging by flat lens using negative refraction,” Nature 426, 404–404 (2003). [CrossRef]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  10. A. L. Pokrovsky, A. L. Efros, “Lens based on the use of left-handed materials,” Appl. Opt. 42, 5701–5705 (2003). [CrossRef] [PubMed]
  11. Z. M. Zhang, C. J. Fu, “Unusual photon tunneling in the presence of a layer with a negative refractive index,” Appl. Phys. Lett. 80, 1097–1099 (2002). [CrossRef]
  12. C. J. Fu, Z. M. Zhang, “Transmission enhancement using a negative-refraction layer,” Microscale Thermophys. Eng. 7, 221–234 (2003). [CrossRef]
  13. D. R. Smith, D. Schurig, J. B. Pendry, “Negative refraction of modulated electromagnetic waves,” Appl. Phys. Lett. 81, 2713–2715 (2002). [CrossRef]
  14. W. T. Lu, J. B. Sokoloff, S. Sridhar, “Refraction of electromagnetic energy for wave packets incident on a negative-index medium is always negative,” Phys. Rev. E 69, 026604 (2004). [CrossRef]
  15. Z. M. Zhang, K. Park, “On the group front and group velocity in a dispersive medium upon refraction from a non-dispersive medium,” J. Heat Transfer 126, 244–249 (2004). [CrossRef]
  16. J. A. Kong, B.-I. Wu, Y. Zhang, “Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,” Appl. Phys. Lett. 80, 2084–2086 (2002). [CrossRef]
  17. P. R. Berman, “Goos-Hänchen shift in negatively refractive media,” Phys. Rev. E 66, 067603 (2002). [CrossRef]
  18. A. Lakhtakia, “On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability,” Electromagnetics 23, 71–75 (2003). [CrossRef]
  19. D.-K. Qing, G. Chen, “Goos-Hänchen shifts at the interfaces between left- and right-handed media,” Opt. Lett. 29, 872–874 (2004). [CrossRef] [PubMed]
  20. J. A. Kong, Electromagnetic Wave Theory, 2nd ed. (Wiley, 1990).
  21. S. G. Kaplan, L. M. Hanssen, “FT-IR based ellipsometer using high-quality Brewster-angle polarizers,” in Polarization: Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 285–293 (1999).
  22. A. H. Sihvola, I. V. Lindell, “Novel effects in wave reflection from biisotropic media,” Microwave Opt. Technol. Lett. 6, 581–584 (1993). [CrossRef]
  23. X. Yang, D. Wagner, B. Piosczyk, K. Koppenberg, E. Borie, R. Heidinger, F. Leuterer, G. Dammertz, M. Thumm, “Analysis of transmission characteristics for single and double disk windows,” Int. J. Infrared Millim. Waves 24, 619–628 (2003). [CrossRef]
  24. T. A. Leskova, A. A. Maradudin, I. Simonsen, “Scattering of electromagnetic waves from the random surface of a left-handed medium,” in Surface Scattering and Diffraction for Advanced Metrology, Z.-H. Gu, A. A. Maradudin, eds., Proc. SPIE4447, 6–16 (2001). [CrossRef]
  25. T. A. Leskova, A. A. Maradudin, I. Simonsen, “Coherent scattering of an electromagnetic wave from, and its transmission through, a slab of a left-handed medium with a randomly rough illuminated surface,” in Surface Scattering and Diffraction III, Z.-H. Gu, A. A. Maradudin, eds., Proc. SPIE5189, 22–35 (2003). [CrossRef]
  26. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), Chap. 2. [CrossRef]
  27. R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1963), Vol. 1, Secs. 31 and 30-7.
  28. M. Schwartz, Principles of Electrodynamics (McGraw-Hill, 1972), Chap. 7.
  29. H. M. Lai, Y. P. Lau, W. H. Wong, “Understanding wave characteristics via linear superposition of retarded fields,” Am. J. Phys. 70, 173–179 (2002). [CrossRef]
  30. G. N. Henderson, T. K. Gaylord, E. N. Glytsis, “Ballistic electron transport in semiconductor heterostructures and its analogies in electromagnetic propagation in general dielectrics,” Proc. IEEE 79, 1643–1659 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited