OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 18 — Jun. 20, 2005
  • pp: 3725–3734

Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks

A. Podshyvalov, R. K. Sahu, S. Mark, K. Kantarovich, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, and S. Mordechai  »View Author Affiliations


Applied Optics, Vol. 44, Issue 18, pp. 3725-3734 (2005)
http://dx.doi.org/10.1364/AO.44.003725


View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fourier-transform infrared spectroscopy has shown alterations of spectral characteristics of cells and tissues as a result of carcinogenesis. The research reported here focuses on the diagnosis of cancer in formalin-fixed biopsied tissue for which immunochemistry is not possible and when PAP-smear results are to be confirmed. The data from two groups of patients (a control group and a group of patients diagnosed with cervical cancer) were analyzed. It was found that the glucose/phosphate ratio decreases (by 23–49%) and the RNA/DNA ratio increases (by 38–150%) in carcinogenic compared with normal tissue. Fourier-transform microspectroscopy was used to examine these tissues. This type of study in larger populations may help to set standards or classes with which to use treated biopsied tissue to predict the possibility of cancer. Probabilistic neural networks and statistical tests as parts of these biopsies predict the possibility of cancer with a high degree of accuracy (>95%).

© 2005 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(180.0180) Microscopy : Microscopy

History
Original Manuscript: December 25, 2003
Revised Manuscript: November 26, 2004
Manuscript Accepted: November 30, 2004
Published: June 20, 2005

Citation
A. Podshyvalov, R. K. Sahu, S. Mark, K. Kantarovich, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, and S. Mordechai, "Distinction of cervical cancer biopsies by use of infrared microspectroscopy and probabilistic neural networks," Appl. Opt. 44, 3725-3734 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-18-3725


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. American Cancer Society, Cancer Facts and Figures 2005 (American Cancer Society, Atlanta, Ga., 2005).
  2. S. S. Devessa, J. L. Young, J. F. Fraumeni, “Recent trends in cervix uteri cancer,” Cancer 64, 2184–2190 (1989). [CrossRef]
  3. J. Waterhouse, C. Muir, K. Shanmugaratnam, J. Powell, eds., Cancer Incidence in Five Continents, Vol. 42 of International Agency for Research on Cancer scientific publication series (IARC, Lyon, 1982), Vol. 4, p. 42.
  4. J. A. Carmichael, D. H. Clarke, D. Moher, I. D. Ohlke, E. J. Karchmar, “Cervical carcinoma in women aged 34 and younger,” Am. J. Obstet. Gynecol. 154, 264–269 (1986). [CrossRef] [PubMed]
  5. M. H. Schiffman, L. A. Brinton, S. S. Devessa, J. Fraumeni, F. Joseph, “Cervical cancer,” in Cancer Epidemiology and Prevention, D. Schottenfeld, J. Fraumeni, F. Joseph, eds. (Oxford U. Press, New York, 1996).
  6. A. G. Hanselaar, G. P. Vooijs, P. S. Oud, M. M. Pahlplatz, J. L. Beck, “DNA ploidy patterns in cervical intraepithelial neoplasia grade III, with and without synchronous invasive squamous cell carcinoma. Measurements in nuclei isolated from paraffin-embedded tissue,” Cancer 62, 2537–2545 (1988). [CrossRef] [PubMed]
  7. H. M. Bauer, Y. Ting, C. E. Grecer, J. C. Chambers, C. J. Tashiro, J. Chimera, A. Reingold, M. M. Manos, “Genital human papillomavirus infection in female university students as determined by a PCR-based method,” J. Am. Med. Assoc. 265, 472–477 (1991). [CrossRef]
  8. L. Chiriboga, P. Xie, H. Yee, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy,” Cell. Mol. Biol. 44, 219–229 (1998). [PubMed]
  9. L. Chiriboga, P. Xie, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells,” Biospectroscopy 4, 55–59 (1998). [CrossRef] [PubMed]
  10. L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, “Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix,” Biospectroscopy 4, 47–53 (1998). [CrossRef] [PubMed]
  11. P. T. Wong, M. K. Senterman, P. Jackli, R. K. Wong, S. Salib, C. E. Campbell, R. Feigel, W. Faught, M. Fung, Kee Fung, “Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells,” Biopolymers 67, 376–386 (2002). [CrossRef] [PubMed]
  12. B. R. Wood, M. A. Quinn, B. Tait, M. Ashdown, T. Hislop, M. Romeo, D. McNaughton, “FTIR microspectroscopic study of cell types and potential confounding variables in screening for cervical malignancies,” Biospectroscopy 4, 75–91 (1998). [CrossRef] [PubMed]
  13. S. R. Lowry, “The analysis of exfoliated cervical cells by infrared microscopy,” Cell. Mol. Biol. 44, 169–177 (1998). [PubMed]
  14. M. A. Cohenford, T. A. Godwin, F. Cahn, P. Bhandare, T. A. Caputo, B. Rigas, “Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis,” Gynecol. Oncol. 66, 59–65 (1997). [CrossRef] [PubMed]
  15. M. F. K. Fung, M. Senterman, P. Eid, W. Fraught, N. Z. Mikhael, P. T. T. Wong, “Comparison of Fourier-transform infrared spectroscopic screening of exfoliated cervical cells with standard Papanicolaou screening,” Gynecol. Oncol. 66, 10–15 (1997). [CrossRef]
  16. M. Diem, L. Chiriboga, P. Lasch, A. Pacifico, “IR spectra and IR spectral maps of individual normal and cancerous cells,” Biopolymers 67, 349–353 (2002). [CrossRef] [PubMed]
  17. S. Neviliappan, L. Fang Kan, T. T. L. Walter, S. Arulkumaran, P. T. Wong, “Infrared spectral features of exfoliated cervical cells, cervical adenocarcinoma tissue, and an adenocarcinoma cell line (SiSo),” Gynecol. Oncol. 85, 170–174 (2002). [CrossRef] [PubMed]
  18. D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” in Infrared and Raman Spectrscopy of Biological Materials. Practical Spectroscopy Series, H.-U. Gremlich, B. Yan, eds. (Marcel-Dekker, New York, 2001), Vol. 24, pp. 323–377.
  19. S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–258 (2002). [CrossRef] [PubMed]
  20. S. G. Mallat, S. Zhong, “Characterization of signals from multiscale edges,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 710–732 (1992). [CrossRef]
  21. D. F. Specht, “Probabilistic neural networks and the polynomial adaline as complementary techniques for classification,” IEEE Trans. Neural Netw. 1, 111–121 (1990). [CrossRef] [PubMed]
  22. R. P. Lippmann, “An introduction to computing with neural nets,” IEEE Proc. ASSP 4, 4–22 (1987). [CrossRef]
  23. P. D. Wasserman, Neural Computing: Theory and Practice (Van Nostrand Reinhold, New York, 1989).
  24. A. Ferenczy, in Pathology of the Female Genital Tract, A. Blaustine, ed. (Springer-Verlag, Heidelberg, 1982).
  25. P. T. T. Wong, R. K. Wong, T. A. Caputo, T. A. Godwin, B. Rigas, “Infrared spectroscopy of exfoliated human cervical cells: evidence of extensive structural changes during carcinogenesis,” Proc. Natl. Acad. Sci. USA 88, 10,988–10,992 (1991). [CrossRef]
  26. A. B. Fields, J. G. Jones, G. M. Thomas, C. D. Runowicz, “Gynecologic cancer,” in Clinical Oncology, R. E. Lenhard, R. T. Osten, T. Gansler, eds. (American Cancer Society, Atlanta, Ga., 2001), pp. 455–497.
  27. F. S. Parker, Application of Infrared Spectroscopy in Biochemistry, Biology and Medicine (Plenum, New York, 1971). [CrossRef]
  28. R. A. Shaw, F. B. Guijon, M. Paraskevas, S. L. Ying, H. H. Mantsch, “Infrared spectroscopy of exfoliated cervical cell specimens. Proceed with caution,” Anal. Quant. Cytol. Histol. 21, 292–302 (1999). [PubMed]
  29. A. Salman, S. Argov, R. Jagannathan, J. Goldstein, I. Sinelnikov, H. Guterman, S. Mordechai, “FT-IR microscopic characterization of normal and malignant human colonic tissues,” Cell Mol. Biol. 47, 159–166 (2001).
  30. J. Ramesh, A. Salman, S. Argov, J. Goldstein, I. Sinelnikov, S. Walfisch, H. Guterman, S. Mordechai, “FTIR microscopic studies on normal, polyp and malignant human colonic tissues,” Subsurf. Sens. Technol. Appl. 2, 99–117 (2001). [CrossRef]
  31. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, M. S. Feld, “NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes,” Cancer Res. 62, 682–687 (2002). [PubMed]
  32. N. Ramanujam, M. F. Mitchell, A. Mahadevan, S. Thomsen, E. Silva, R. Richards-Kortum, “Fluorescence spectroscopy: a diagnostic tool for cervical intraepithelial neoplasia (CIN),” Gynecol. Oncol. 52, 31–38 (1994). [CrossRef] [PubMed]
  33. A. Kumar, S. Sharma, C. S. Pundir, A. Sharma, “Decreased plasma glutathiome in cancer of the uterine cervix,” Cancer Lett. 94, 107–111 (1995). [CrossRef] [PubMed]
  34. B. J. Morris, C. Lee, B. N. Nightingale, E. Molodysky, L. J. Morris, S. Sternhell, M. Cardona, D. Mackerras, L. M. Irwig, “Fourier transform infrared spectroscopy of dysplastic, papillomavirus-positive cervicovaginal lavage specimens,” Gynecol. Oncol. 56, 245–249 (1995). [CrossRef] [PubMed]
  35. M. J. Romeo, B. R. Wood, M. A. Quinn, D. McNaughton, “Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy,” Biospectroscopy 72, 69–76 (2003).
  36. S. Mark, R. K. Sahu, K. Kantarovich, A. Podshyvalov, H. Guterman, J. Goldstein, R. Jagannathan, S. Argov, S. Mordechai, “Fourier transform infrared microspectroscopy as a quantitative diagnostic tool for assignment of premalignancy grading in cervical neoplasia,” J. Biomed. Opt. 9, 558–567 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited