OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 18 — Jun. 20, 2005
  • pp: 3735–3746

Computations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractive-based detection

Florian J. Blonigen, Alex Nieva, Charles A. DiMarzio, Sébastien Manneville, Lei Sui, Gopi Maguluri, Todd W. Murray, and Ronald A. Roy  »View Author Affiliations

Applied Optics, Vol. 44, Issue 18, pp. 3735-3746 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Acoustophotonic imaging uses ultrasound-modulated scattered light to improve the quality of optical imaging in diffusive media. Experiments that use photorefractive-crystal-based detection have shown that there is a large dc shift in the acoustically modulated or ac optical signal, which could be utilized to further improve optical imaging resolution. We report that photon paths in a diffusive medium were generated by a Monte Carlo simulation, and the optical phase shifts of the various photons induced by the presence of a realistic focused ultrasound beam were calculated. Quantities that characterize the ac and dc signal components were evaluated by use of the calculated phase shifts. It was confirmed that the dc component dominates owing to coherent summation of the contributions from all the photons.

© 2005 Optical Society of America

OCIS Codes
(110.7050) Imaging systems : Turbid media
(110.7170) Imaging systems : Ultrasound
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.7050) Scattering : Turbid media

Original Manuscript: August 13, 2004
Revised Manuscript: January 19, 2005
Manuscript Accepted: January 29, 2005
Published: June 20, 2005

Florian J. Blonigen, Alex Nieva, Charles A. DiMarzio, Sébastien Manneville, Lei Sui, Gopi Maguluri, Todd W. Murray, and Ronald A. Roy, "Computations of the acoustically induced phase shifts of optical paths in acoustophotonic imaging with photorefractive-based detection," Appl. Opt. 44, 3735-3746 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Tuchin, ed., Handbook of Optical Biomedical Diagnostics (SPIE, 2002).
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” in IEEE Signal Process. Mag. 18, 57–75 (2001). [CrossRef]
  3. J. A. Moon, R. Mahon, M. D. Duncan, J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591–1593 (1993). [CrossRef] [PubMed]
  4. F. A. Marks, H. W. Tomlinson, G. W. Brooksby, “A comprehensive approach to breast cancer detection using light: photon localization by ultrasound modulation and tissue characterization by spectral discrimination,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. A. Alfano, eds., Proc. SPIE1888, 500–510 (1993). [CrossRef]
  5. G. D. Mahan, W. E. Engler, J. J. Tiemann, E. G. Uzgiris, “Ultrasonic tagging of light: theory,” Proc. Natl. Acad. Sci. USA 95, 14,015–14,019 (1998). [CrossRef]
  6. L.-H. V. Wang, S. L. Jacques, X.-M. Zhao, “Continuous-wave ultrasonic modulation of scattered laser light to image objects in turbid media,” Opt. Lett. 20, 629–631 (1995). [CrossRef] [PubMed]
  7. L.-H. V. Wang, X.-M. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buried in dense tissue-simulating turbid media,” Appl. Opt. 36, 7277–7282 (1997). [CrossRef]
  8. M. Kempe, M. Larionov, D. Zaslavsky, A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997). [CrossRef]
  9. S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999). [CrossRef]
  10. C. A. DiMarzio, R. J. Gaudette, T. J. Gaudette, “A new imaging technique combining diffusive photon density waves and focused ultrasound,” in Optical Tomography and Spectroscopy of Tissue III, B. Chance, R. A. Alfano, B. J. Tromberg, eds., Proc. SPIE3597, 376–384 (1999). [CrossRef]
  11. S. Leveque, J. Selb, L. Pottier, A. C. Boccara, “In situ local tissue characterization and imaging by backscattering acousto-optic imaging,” Opt. Commun. 196, 127–131 (2001). [CrossRef]
  12. D. Dolfi, F. Micheron, “Imaging process and system for transillumination with photon frequency marking,” U.S. patent, 5,174,298 (29December1992).
  13. A. Lev, B. Sfez, “In vivo demonstration of the ultrasound-modulated light technique,” J. Opt. Soc. Am. A 20, 2347–2354 (2003). [CrossRef]
  14. L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903 (2001). [CrossRef] [PubMed]
  15. L.-H. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001). [CrossRef]
  16. S. Sakadžić, L.-H. V. Wang, “Ultrasonic modulation of multiply scattered coherent light: an analytical model for anisotropically scattering media,” Phys. Rev. E 66, 026603 (2002). [CrossRef]
  17. G. Yao, L.-H. V. Wang, “Signal dependence and noise source in ultrasound-modulated optical tomography,” Appl. Opt. 43, 1320–1326 (2004). [CrossRef] [PubMed]
  18. T. W. Murray, L. Sui, G. Maguluri, R. A. Roy, A. Nieva, F. Blonigen, C. A. DiMarzio, “Detection of ultrasound-modulated photons in diffuse media using the photorefractive effect,” Opt. Lett. 29, 2509–2511 (2004). [CrossRef] [PubMed]
  19. R. K. Ing, J. P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991). [CrossRef]
  20. A. Blouin, J. P. Monchalin, “Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal,” Appl. Phys. Lett. 65, 932–934 (1994). [CrossRef]
  21. P. Delaye, A. Blouin, D. Drolet, L.-A. de Montmorillon, G. Roosen, J.-P. Monchalin, “Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field,” J. Opt. Soc. Am. B 14, 1723–1734 (1997). [CrossRef]
  22. A. Nieva, S. Manneville, D. A. Boas, R. Roy, C. A. DiMarzio, “Monte Carlo simulations in acousto-photonic imaging,” in Digest of Topical Meeting on Biomedical Optics (Optical Society of America, 2002).
  23. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1987).
  24. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995). [CrossRef]
  25. P. Delaye, L.-A. de Montmorillon, G. Roosen, “Transmission of time modulated optical signals through an absorbing photorefractive crystal,” Opt. Commun. 118, 154–164 (1995). [CrossRef]
  26. R. D. Guenther, Modern Optics (Wiley, 1990).
  27. M. Hamilton, D. Blackstock, Nonlinear Acoustics: Theory and Applications (Academic, 1998).
  28. I. M. Hallaj, R. O. Cleveland, “FDTD simulation of finite amplitude pressure and temperature fields for biomedical ultrasound,” J. Acoust. Soc. Am. 105, L7–L12 (1999). [CrossRef] [PubMed]
  29. K. Yosioka, Y. Kawasima, “Acoustic radiation pressure on a compressible sphere,” Acustica 5, 167–173 (1955).
  30. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990). [CrossRef]
  31. V. G. Peters, D. R. Wyman, M. S. Patterson, G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317–1334 (1990). [CrossRef] [PubMed]
  32. S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch, “A Monte Carlo model for light propagation in tissue,” in Dosimetry of Laser Radiation in Medicine and Biology, Vol. IS5 of SPIE Institute Series (SPIE, 1989), pp. 102–111.
  33. H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), Vol. 2.
  34. L.-H. V. Wang, G. Ku, “Frequency-swept ultrasound-modulated optical tomography of scattering media,” Opt. Lett. 23, 975–977 (1998). [CrossRef]
  35. A. Lev, B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited