OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 18 — Jun. 20, 2005
  • pp: 3795–3804

Empirical relationships between extinction coefficient and visibility in fog

Roberto Nebuloni  »View Author Affiliations


Applied Optics, Vol. 44, Issue 18, pp. 3795-3804 (2005)
http://dx.doi.org/10.1364/AO.44.003795


View Full Text Article

Enhanced HTML    Acrobat PDF (159 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Relationships between visibility and an extinction coefficient that is due to fog in optical windows that are free from molecular absorption are derived. The extinction coefficients in the visible (0.55 µm), the near IR (1.2 µm), and the mid IR (3.7 µm) are comparable to and roughly twice as much as that in the far IR (10.6 µm) when visibility is less than a few hundred meters. The advantage of far-IR radiation compared with shorter wavelengths grows as visibility exceeds 500 m. Correspondingly, the relationship between extinction coefficient and visibility becomes more sensitive to variations in the particle-size distribution of fog.

© 2005 Optical Society of America

OCIS Codes
(010.1300) Atmospheric and oceanic optics : Atmospheric propagation
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(060.4510) Fiber optics and optical communications : Optical communications
(200.2610) Optics in computing : Free-space digital optics

History
Original Manuscript: November 5, 2003
Revised Manuscript: September 14, 2004
Manuscript Accepted: October 5, 2004
Published: June 20, 2005

Citation
Roberto Nebuloni, "Empirical relationships between extinction coefficient and visibility in fog," Appl. Opt. 44, 3795-3804 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-18-3795


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Acampora, S. H. Bloom, S. Krishnamurthy, “UniNet: a hybrid approach for universal broadband access using small radio cells interconnected by free-space optical links,” IEEE J. Sel. Areas Commun. 16, 973–987 (1998). [CrossRef]
  2. P. L. Eardley, D. R. Wisely, “1 Gbit/s optical free space link operating over 40 m—system and applications,” IEE Proc. Op-toelectron. 143, 330–333 (1996). [CrossRef]
  3. I. I. Kim, E. J. Korevaar, “Availability of free space optics (FSO) and hybrid FSO/RF systems,” in Optical Wireless Communications IV, E. J. Korevaar, eds., Proc. SPIE4530, 84–95 (2001). [CrossRef]
  4. M. D’Amico, A. Leva, B. Micheli, “Free-space optics communication systems: first results from a pilot field-trial in the surrounding area of Milan, Italy,” IEEE Microwave Wireless Compon. Lett. 13, 305–307 (2003). [CrossRef]
  5. X. Zhu, J. M. Kahn, “Free-space optical communication through atmospheric turbulence channels,” IEEE Trans. Commun. 50, 1293–1300 (2002). [CrossRef]
  6. S. Arnon, “The effects of atmospheric turbulence and building sway on optical wireless communication systems,” Opt. Lett. 28, 129–131 (2003). [CrossRef] [PubMed]
  7. S. Arnon, “Optimization of urban optical wireless communication systems,” IEEE Trans. Wireless Commun. 2, 626–629 (2003). [CrossRef]
  8. D. A. Stewart, O. M. Essenwanger, “A survey of fog and related optical propagation characteristics,” Rev. Geophys. 20, 481–495 (1982). [CrossRef]
  9. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  10. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002). [CrossRef]
  11. D. Deirmendjian, “Far-infrared and submillimeter wave attenuation by clouds and rain,” J. Appl. Meteorol. 14, 1584–1593 (1975). [CrossRef]
  12. F. Tampieri, C. Tomasi, “Size distribution models of fog and cloud droplets and their volume extinction coefficients at visible and infrared wavelengths,” Pure Appl. Geophys. 114, 571–586 (1976). [CrossRef]
  13. H. Vasseur, C. J. Gibbins, “Inference of fog characteristics from attenuation measurements at millimeter and optical wavelengths,” Radio Sci. 31, 1089–1097 (1996). [CrossRef]
  14. R. G. Pinnick, S. G. Jennings, P. Chýllek, H. J. Auvermann, “Verification of a linear relationship between IR extinction, absorption and liquid water content of fogs,” J. Atmos. Sci. 36, 1577–1586 (1979). [CrossRef]
  15. C. Tomasi, F. Tampieri, “Features of the proportionality coefficient in the relationship between visibility and liquid water content in haze and fog,” Atmosphere 14, 61–76 (1976).
  16. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  17. G. G. Gimmestad, L. W. Winchester, W. K. Choi, S. M. Lee, “Correlation between infrared and visible extinction coefficients of fog,” Opt. Letters 7, 471–474 (1982). [CrossRef]
  18. U.S. Environmental Protection Agency, “Protecting visibility: an EPA report to Congress,” EPA-450/5-79-008 (U.S. Government Printing Office, Washington, D.C., 1979).
  19. D. J. Griggs, D. W. Jines, M. Ouldrige, W. R. Sparks, “The first WMO intercomparison of visibility measurements,” Instruments and Observing Methods Rep. 41, (World Meteorological Organisation, Geneva, 1990).
  20. P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan, Elements of Infrared Technology: Generation, Transmission and Detection (Wiley, New York, 1962).
  21. A. Ångström, “On the atmospheric transmission of sun radiation and on dust in the air,” Geograf. Ann. Deut. 11, 156–166 (1929). [CrossRef]
  22. F. Löhle, “Über die lichtzerstreuung im nebel,” Phys. Z. 45, 199–205 (1944).
  23. W. E. K. Middleton, Vision through the Atmosphere (U. of Toronto Press, Toronto, Canada, 1952).
  24. M. Wolff, “Die lichttechnischen Eigenschaften des Nebels,” Das Light 8, 105–109, 128–130 (1938).
  25. I. I. Kim, B. McArthur, E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” in Optical Wireless Communications III, E. J. Korevaar, ed., Proc. SPIE4214, 26–37 (2001). [CrossRef]
  26. R. G. Eldridge, “Mist—the transition from haze to fog,” Bull. Am. Meteorol. Soc. 50, 422–426 (1969).
  27. A. Arnulf, J. Bricard, E. Curé, C. Véret, “Transmission by haze and fog in the spectral region 0.35 to 10 microns,” J. Opt. Soc. Am. 47, 491–498 (1957). [CrossRef]
  28. J. Abele, H. Raidt, D. H. Höhn, “Studies on the influence of meteorological parameters on atmospheric laser transmission,” Opt. Acta 27, 1445–1464 (1980). [CrossRef]
  29. M. R. Clay, A. P. Lenham, “Transmission of electromagnetic radiation in fogs in the 0.53–10.1-µm wavelength range,” Appl. Opt. 20, 3831–3832 (1981). [CrossRef]
  30. T. S. Chu, D. C. Hogg, “Effect of precipitation on propagation at 0.63, 3.5 and 10.6 microns,” Bell. Syst. Tech. J. 47, 723–759 (1968). [CrossRef]
  31. R. E. Turner, F. G. Gebhardt, J. L. Manning, R. E. Meredith, S. M. Singer, F. G. Smith, P. C. Vavra, “Model development for EOSAEL: natural aerosol, contrast, laser transmission, and turbulence,” (U.S. Government Printing Office, Washington, D.C., 1980).
  32. S. W. Kurnick, R. N. Zitter, D. B. Williams, “Attenuation of infrared radiation by fogs,” J. Opt. Soc. Am. 50, 578–583 (1960). [CrossRef]
  33. D. B. Rensch, R. K. Long, “Comparative studies of extinction and backscattering by aerosols, fog, and rain at 10.6 μ and 0.63 μ,” Appl. Opt. 9, 1563–1573 (1970). [CrossRef] [PubMed]
  34. W. G. Tam, A. Zardecki, “Multiple scattering corrections to the Beer–Lambert law. 1. Open detector,” Appl. Opt. 21, 2405–2412 (1982). [CrossRef] [PubMed]
  35. A. Zardecki, W. G. Tam, “Multiple scattering corrections to the Beer–Lambert law. 2. Detector with a variable field of view,” Appl. Opt. 21, 2413–2420 (1982). [CrossRef] [PubMed]
  36. J. H. McCoy, D. B. Rensch, R. K. Long, “Water vapor continuum absorption of carbon dioxide laser radiation near 10 µm,” Appl. Opt. 8, 1471–1478 (1969). [CrossRef] [PubMed]
  37. G. H. Ruppersberg, R. Schellhase, H. Schuster, “Calculations about the transmittance window of clouds and fog at about 10.5 µm wavelength,” Atmos. Environ. 9, 723–730 (1975). [CrossRef]
  38. J. Gowar, Optical Communication Systems, 2nd ed. (Prentice-Hall, Engelwood Cliffs, N.J., 1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited