OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 3904–3911

Air bubble-induced light-scattering effect on image quality in 193 nm immersion lithography

Yongfa Fan, Neal Lafferty, Anatoly Bourov, Lena Zavyalova, and Bruce W. Smith  »View Author Affiliations


Applied Optics, Vol. 44, Issue 19, pp. 3904-3911 (2005)
http://dx.doi.org/10.1364/AO.44.003904


View Full Text Article

Enhanced HTML    Acrobat PDF (2001 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

As an emerging technique, water immersion lithography, offers the capability of reducing critical dimensions by increasing the numerical aperture that is due to the higher refractive indices of immersion liquids than that of air. However, in the process of forming a water fluid layer between the resist and the lens surfaces, air bubbles are often created because of the high surface tension of water. The presence of air bubbles in the immersion layer will degrade the image quality because of the inhomogeneity-induced light scattering in the optical path. Analysis by geometrical optics indicates that the total reflection of light causes the enhancement of scattering in the region in which the scattering angle is less than the critical scattering angle, which is 92 deg at 193 nm. Based on Mie theory, numerical evaluation of scattering that is due to air bubbles, polystyrene spheres, and poly(methyl methacrylate) spheres was conducted for TE, TM, or unpolarized incident light. Comparison of the scattering patterns shows that the polystyrene spheres and air bubbles resemble each other with respect to scattering properties. In this paper, polystyrene spheres are used to mimic air bubbles in studies of lithographic imaging of bubbles in immersion water. In an interferometric lithography system, the distance beyond which bubbles will not print can be estimated by direct counting of defect sites.

© 2005 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(290.5850) Scattering : Scattering, particles

History
Original Manuscript: September 7, 2004
Revised Manuscript: November 21, 2004
Manuscript Accepted: December 6, 2004
Published: July 1, 2005

Citation
Yongfa Fan, Neal Lafferty, Anatoly Bourov, Lena Zavyalova, and Bruce W. Smith, "Air bubble-induced light-scattering effect on image quality in 193 nm immersion lithography," Appl. Opt. 44, 3904-3911 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-19-3904


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1–20 (2004). [CrossRef]
  2. M. D. Levenson, N. S. Viswanathan, R. A. Simpson, “Improving resolution in photolithography with a phase-shifting mask,” IEEE Trans. Electron Devices ED-29, 1828–1836 (1982). [CrossRef]
  3. M. D. Levenson, D. S. Goodman, S. Lindsey, P. W. Bayer, H. A. E. Santini, “The phase-shifting mask II: Imaging simulations and submicrometer resist exposures,” IEEE Trans. Electron Devices ED-31, 1828–1836 (1984).
  4. M. D. Levenson, “Extending the lifetime of optical lithography technologies with wavefront engineering,” Jpn. J. Appl. Phys. 33, 6765–6773 (1994). [CrossRef]
  5. J. F. Chen, J. S. Petersen, R. J. Socha, T. L. Laidig, K. E. Wampler, K. H. Nakagawa, G. P. Hughes, S. S. MacDonald, W. Ng, “Binary halftone chromeless PSM technology for λ/4 optical lithography,” in Optical Microlithography XIV, C. P. Progler, ed., Proc. SPIE4346, 515–533 (2001). [CrossRef]
  6. D. Van Den Broeke, J. F. Chen, T. Laidig, S. Hsu, K. E. Wampler, R. Socha, J. S. Peterson, “Complex two-dimensional pattern lithography using chromeless phase lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 229–242 (2002).
  7. J. Garofalo, C. J. Biddick, R. L. Kostelak, S. Vaidya, “Mask assisted off-axis illumination technique for random logic,” J. Vac. Sci. Technol. B 11, 2651–2658 (1993). [CrossRef]
  8. E. Tamechika, T. Horiuchi, K. Harada, “Resolution improvement using auxiliary pattern groups in oblique illumination lithography,” Jpn. J. Appl. Phys. 32, 5856–5862 (1993). [CrossRef]
  9. B. W. Smith, “Optics for photolithography,” in Microlithography Science and Technology, J. R. Sheats, B. W. Smith, eds. (Marcel Dekker, New York, 1998), pp. 171–270.
  10. K. Ronse, P. De Bisschop, A. M. Goethals, J. Hermans, R. Jonckheere, S. Light, U. Okoroanyanwu, R. Watso, D. McAfferty, J. Ivaldi, T. Oneil, H. Sewell, “Status and critical challenges for 157-nm lithography,” Microelectron. Eng. 73–74, 5–10 (2004). [CrossRef]
  11. R. R. Kunz, M. Switkes, R. Sinta, J. E. Curtin, R. H. French, R. C. Wheland, C. C. Kao, M. P. Mawn, L. Lin, P. Wetmore, V. Krukonis, K. Williams, “Transparent fluids for 157-nm immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 3, 73–83 (2004).
  12. F. Eschbach, A. Tregub, K. Orvek, C. Foster, F.-C. Lo, I. Matsukura, N. Tsushima, “Development of polymer membranes for 157-nm lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1627–1640 (2004). [CrossRef]
  13. A. Engel, K. Knapp, L. Aschke, E. Moersen, W. Triebel, C. Chojetzki, S. Brueckner, “Development and investigation of high-quality CaF2 used for 157-nm microlithography,” in Optical Microlithography XIV, C. J. Progler, eds., Proc. SPIE4346, 1183–1189 (2001). [CrossRef]
  14. B. W. Smith, H. Kang, A. Bourov, F. Cropanese, Y. Fan, “Water immersion optical lithography for the 45-nm node,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 679–689 (2003). [CrossRef]
  15. B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlithogr. Microfabr. Microsyst. 3, 44–51 (2004).
  16. B.-J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 46–67 (2004). [CrossRef]
  17. S. R. Brueck, A. M. Biswas, “Extension of 193-nm immersion optical lithography to the 22-nm2 half-pitch node,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 1315–1322 (2004). [CrossRef]
  18. J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, F. A. Houle, “Liquid immersion deep-ultraviolet interferometric lithography,” J. Vac. Sci. Technol. B 17, 3306–3309 (1999). [CrossRef]
  19. S. Owa, H. Nagasaka, Y. Ishii, O. Hirakawa, T. Yamamoto, “Feasibility of immersion lithography,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 264–272 (2004). [CrossRef]
  20. M. Cheng, B. C. Ho, R. Yamaguchi, K. Yoshioka, H. Yaegashi, “Optical coupling of lens, liquid and resist in immersion lithography: rigorous model and assessment,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE5377, 405–414 (2004). [CrossRef]
  21. B. J. Lin, “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography,” J. Microlithogr. Microfabr. Microsyst. 1, 7–12 (2002).
  22. S. Owa, H. Nagasaka, “Immersion lithography: its potential performance and issues,” in Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 724–732 (2003). [CrossRef]
  23. P. L. Marston, “Light scattering from bubbles in water,” in Proceedings of Oceans 89, Publication 89CH2780-5 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1989), pp. 1186–1193. [CrossRef]
  24. C. F. Bohren, D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998), pp. 82–129. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited