OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 3925–3936

Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions

Adam P. Gibson, Jeremy C. Hebden, Jason Riley, Nicholas Everdell, Martin Schweiger, Simon R. Arridge, and David T. Delpy  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 3925-3936 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Most research in optical imaging incorrectly assumes that light transport in nonscattering regions in the head may be modeled by use of the diffusion approximation. The effect of this assumption is examined in a series of experiments on tissue-equivalent phantoms. Images from cylindrical and head-shaped phantoms with and without clear regions [simulating the cerebrospinal fluid (CSF) filled ventricles] and a clear layer (simulating the CSF layer surrounding the brain) are reconstructed with linear and nonlinear reconstruction techniques. The results suggest that absorbing and scattering perturbations can be identified reliably with nonlinear reconstruction methods when the clear regions are also present in the reference data but that the quality of the image degrades considerably if the reference data does not contain these features. Linear reconstruction performs similarly to nonlinear reconstruction, provided the clear regions are present in the reference data, but otherwise linear reconstruction fails. This study supports the use of linear reconstruction for dynamic imaging but suggests that, in all cases, image quality is likely to improve if the clear regions are modeled correctly.

© 2005 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6920) Medical optics and biotechnology : Time-resolved imaging

Adam P. Gibson, Jeremy C. Hebden, Jason Riley, Nicholas Everdell, Martin Schweiger, Simon R. Arridge, and David T. Delpy, "Linear and nonlinear reconstruction for optical tomography of phantoms with nonscattering regions," Appl. Opt. 44, 3925-3936 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999). [CrossRef]
  2. J. C. Hebden, S. R. Arridge, D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997). [CrossRef] [PubMed]
  3. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Processing Mag. 18, 57–75 (2001). [CrossRef]
  4. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, H. Rinneberg, “Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors,” Appl. Opt. 42, 3170–3186 (2003). [CrossRef] [PubMed]
  5. M. J. Holboke, B. J. Tromberg, X. Li, N. Shah, J. B. Fishkin, D. Kidney, J. Butler, B. Chance, A. G. Yodh, “Three-dimensional diffuse optical mammography with ultrasound localization in a human subject,” J. Biomed. Opt. 5, 237–247 (2000). [CrossRef] [PubMed]
  6. H. Dehghani, B. W. Pogue, S. P. Poplack, K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom and clinical results,” Appl. Opt. 42, 135–145 (2003). [CrossRef] [PubMed]
  7. J. C. Hebden, T. Bland, E. M. C. Hillman, A. P. Gibson, N. Everdell, D. T. Delpy, S. R. Arridge, M. Douek, “Optical tomography of the breast using a 32-channel time-resolved imager,” in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C., 2002), 187–189.
  8. A. Li, E. L. Miller, M. Kilmer, T. J. Brukilacchio, T. Chaves, J. J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography,” Appl. Opt. 42, 5181–5190 (2003). [CrossRef] [PubMed]
  9. D. A. Benaron, S. R. Hintz, A. Villringer, D. A. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W.-F. Cheong, D. K. Stevenson, “Noninvasive functional imaging of human brain using light,” J. Cereb. Blood Flow Metab. 20, 469–477 (2000). [CrossRef] [PubMed]
  10. J. C. Hebden, A. P. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, T. Austin, J. Meek, J. S. Wyatt, “Three-dimensional optical tomography of the premature infant brain,” Phys. Med. Biol. 47, 4155–4166 (2002). [CrossRef] [PubMed]
  11. J. C. Hebden, A. P. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, J. S. Wyatt, “Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography,” Phys. Med. Biol. 49, 1117–1130 (2004). [CrossRef] [PubMed]
  12. A. Y. Bluestone, G. Abdouleav, C. H. Schmitz, R. L. Barbour, A. H. Hielscher, “Three-dimensional optical tomography of hemodynamics in the human head,” Opt. Express 9, 272–286 (2001). [CrossRef] [PubMed]
  13. M. A. Franceschini, V. Toronov, M. E. Filiaci, E. Gratton, S. Fantini, “On-line optical imaging of the human brain with 160 ms temporal resolution,” Opt. Express 6, 49–57 (2000). [CrossRef] [PubMed]
  14. B. Chance, E. Anday, S. Nioka, S. Zhou, L. Hong, K. Worden, C. Li, T. Murray, Y. Ovetsky, D. Pidikiti, R. Thomas, “A novel method for fast imaging of brain function, noninvasively, with light,” Opt. Express 2, 411–423 (1998). [CrossRef] [PubMed]
  15. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology 40, 501–510 (2003). [CrossRef] [PubMed]
  16. L. Marti-Lopez, J. Bouza-Dominguez, J. C. Hebden, S. R. Arridge, R. A. Martinez-Celirio, “Validity Conditions for the radiative transfer equation,” J. Opt. Soc. Am. A. 20, 2046–2056 (2003). [CrossRef]
  17. F. F. Jöbsis, “Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198, 1264–1267 (1977). [CrossRef]
  18. A. D. Edwards, C. Richardson, M. Cope, J. S. Wyatt, D. T. Delpy, E. O. R. Reynolds, “Cotside measurement of cerebral blood flow in ill newborn infants by near infrared spectroscopy,” Lancet 332, 770–771 (1988). [CrossRef]
  19. J. Meek, M. Firbank, C. E. Elwell, J. Atkinson, O. Braddick, J. S. Wyatt, “Regional haemodynamic responses to visual stimulation in awake infants.,” Pediatr. Res. 42, 840–843 (1998). [CrossRef]
  20. G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, “Spontaneous oscillation of oxy- and deoxyhemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using noninvasive optical topography,” Neurosci. Lett. 282, 101–104 (2000). [CrossRef] [PubMed]
  21. S. R. Hintz, W. F. Cheong, J. P. van Houten, D. K. Stevenson, D. A. Benaron, “Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging,” Pediatr. Res. 45, 54–59 (1999). [CrossRef] [PubMed]
  22. G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage 17, 719–731 (2002). [CrossRef] [PubMed]
  23. A. H. Hielscher, R. E. Alcouffe, R. L. Barbour, “Comparison of finite difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285–1302 (1998). [CrossRef] [PubMed]
  24. H. Dehghani, D. T. Delpy, S. R. Arridge, “Photon migration in non-scattering tissue and the effects on image reconstruction,” Phys. Med. Biol. 44, 2897–2906 (1999). [CrossRef]
  25. E. Okada, M. Firbank, M. Schweiger, S. R. Arridge, M. Cope, D. T. Delpy, “Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head,” Appl. Opt. 36, 21–31 (1997). [CrossRef] [PubMed]
  26. M. Firbank, S. R. Arridge, M. Schweiger, D. T. Delpy, “An investigation of light transport through scattering bodies with non-scattering regions,” Phys. Med. Biol. 41, 767–783 (1996). [CrossRef] [PubMed]
  27. J. D. Riley, S. R. Arridge, Y. Chrysanthou, H. Dehghani, E. M. Hillman, M. Schweiger, “Radiosity diffusion model in 3D,” in Photon Migration, Optical Coherence Tomography, and Microscopy, S. Andersson-Engels, M. F. Kaschke, eds., Proc. SPIE4431, 153–164 (2001). [CrossRef]
  28. A. H. Hielscher, R. E. Alcouffe, “Non-diffusive photon migration in homogeneous and heterogeneous tissues,” in Photon Propagation in Tissue II, B. Chance, D. Benaron, G. J. Müller, eds., Proc. SPIE2925, 22–30 (1996). [CrossRef]
  29. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Image reconstruction in the presence of a void region,” in Digest of OSA Biomedical Topical Meetings (Optical Society of America, Washington, D.C.2000), pp. 351–353.
  30. Y. Pei, H. L. Graber, R. L. Barbour, “Normalized-constraint algorithm for minimizing inter-parameter crosstalk in DC optical tomography,” Opt. Express 11, 97–109 (2001). [CrossRef]
  31. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, R. L. Barbour, “Instrumentation for fast functional optical tomography,” Rev. Sci. Instrum. 73, 429–439 (2002). [CrossRef]
  32. S. R. Arridge, J. C. Hebden, M. Schweiger, F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, H. Dehghani, D. T. Delpy, “A method for 3D time-resolved optical tomography,” Int. J. Imaging Syst. Technol. 11, 2–11 (2000). [CrossRef]
  33. M. Firbank, M. Oda, D. T. Delpy, “An improved design for a stable and reproducible phantom material for use in near-infrared spectroscopy and imaging,” Phys. Med. Biol. 40, 955–961 (1995). [CrossRef] [PubMed]
  34. A. P. Gibson, R. M. Yusof, H. Dehghani, J. Riley, N. Everdell, R. Richards, J. C. Hebden, M. Schweiger, S. R. Arridge, D. T. Delpy, “Optical tomography of a realistic neonatal head phantom,” Appl. Opt. 42, 3109–3116 (2003). [CrossRef] [PubMed]
  35. F. E. W. Schmidt, J. C. Hebden, E. M. C. Hillman, M. E. Fry, M. Schweiger, H. Dehghani, D. T. Delpy, S. R. Arridge, “Multiple-slice imaging of a tissue-equivalent phantom by use of time-resolved optical tomography,” Appl. Opt. 39, 3380–3387 (2000). [CrossRef]
  36. J. C. Hebden, F. M. Gonzalez, A. P. Gibson, E. M. Hillman, R. M. Yusof, N. Everdell, D. T. Delpy, G. Zaccanti, F. Martelli, “Assessment of an in situ temporal calibration method for time-resolved optical tomography,” J. Biomed. Opt. 8, 87–92 (2003). [CrossRef] [PubMed]
  37. J. Schöberl, “NETGEN - An advancing front 2D/3D-mesh generator based on abstract rules,” Comput. Visual. Sci. 1, 41–52 (1997). [CrossRef]
  38. A. P. Gibson, J. Riley, M. Schweiger, J. C. Hebden, S. R. Arridge, D. T. Delpy, “A method for generating patient-specific finite element meshes for head modelling,” Phys. Med. Biol. 48, 481–495 (2003). [CrossRef] [PubMed]
  39. H. Dehghani, D. T. Delpy, “Linear single-step image reconstruction in the presence of nonscattering regions,” J. Opt Soc. Am. A 19, 1162–1171 (2002). [CrossRef]
  40. M. Schweiger, S. R. Arridge, M. Hiraoka, D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779–1792 (1995). [CrossRef] [PubMed]
  41. H. Dehghani, S. R. Arridge, M. Schweiger, D. T. Delpy, “Optical tomography in the presence of void regions,” J. Opt Soc. Am. A 17, 1659–1670 (2000). [CrossRef]
  42. E. Okada, D. T. Delpy, “Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer,” Appl. Opt. 42, 2906–2914 (2003). [CrossRef] [PubMed]
  43. D. A. Boas, J. P. Culver, J. J. Stott, A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–169 (2002). [CrossRef] [PubMed]
  44. T. Hayashi, Y. Kashio, E. Okada, “Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt. 42, 2888–2896 (2003). [CrossRef] [PubMed]
  45. O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14, 1107–1130 (1998). [CrossRef]
  46. A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 28, 1698–1707 (1999). [CrossRef]
  47. J. Riley, H. Dehghani, M. Schweiger, S. R. Arridge, J. Ripoll, M. Nieto-Vesperinas, “3D optical tomography in the presence of void regions,” Opt. Express 7, 462–467 (2000). [CrossRef] [PubMed]
  48. J. Ripoll, M. Nieto-Vesperinas, S. R. Arridge, “Effect of roughness in nondiffusive regions within biological media,” J. Opt Soc. Am. A 18, 940–947 (2001). [CrossRef]
  49. D. A. Seehusen, M. M. Reeves, D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician 68, 1103–1108 (2003). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited