OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 3969–3976

Enhanced absorption and electro-optic Pockels effect of electrostatically self-assembled CdSe quantum dots

Fajian Zhang, Liangmin Zhang, You-Xiong Wang, and Richard Claus  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 3969-3976 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectrum and electro-optic properties of CdSe quantum dots are studied. Spectrum wavelength shifts that are due to the quantum size effect and to the electro-optic Stark effect are investigated. It is found that CdSe quantum dot–polymer composites formed by an electrostatic self-assembly (ESA) technique exhibit high internal electric fields. Using the second-order perturbation theory of the 1s–1s energy shift (Stark effect), we estimate the internal field of the ESA film to be as high as 2.6 × 108 V/m. This value results in a much higher absorption coefficient and electro-optic coefficients for ESA films than for their bulk crystal counterparts or for spin-coated film samples. The relationships among unusual spectra, film structure, and high electro-optic response are analyzed. These results are useful both for understanding the physical mechanisms of semiconductor quantum dots and for developing high-performance photonic devices.

© 2005 Optical Society of America

OCIS Codes
(160.2100) Materials : Electro-optical materials
(260.3800) Physical optics : Luminescence
(300.6170) Spectroscopy : Spectra
(310.6860) Thin films : Thin films, optical properties

Original Manuscript: April 9, 2004
Revised Manuscript: February 14, 2005
Manuscript Accepted: February 17, 2005
Published: July 1, 2005

Fajian Zhang, Liangmin Zhang, You-Xiong Wang, and Richard Claus, "Enhanced absorption and electro-optic Pockels effect of electrostatically self-assembled CdSe quantum dots," Appl. Opt. 44, 3969-3976 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. P. Alivisatos, “Perspectives on the physical chemistry of semiconductor nanocrystals,” J. Phys. Chem. 100, 13,226–13,239 (1996). [CrossRef]
  2. T. D. Krauss, F. W. Wise, D. B. Tanner, “Observation of coupled vibrational modes of a semiconductor nanocrystal,” Phys. Rev. Lett. 76, 1376–1379 (1996). [CrossRef] [PubMed]
  3. M. V. Artemyev, U. Woggon, “Quantum dots in photonic dots,” Appl. Phys. Lett. 76, 1353–1355 (2000). [CrossRef]
  4. T. Trindade, P. O. Brien, N. L. Pickett, “Nanocrystalline semiconductors: synthesis, properties, and perspectives,” Chem. Mater. 13, 3843–3858 (2001). [CrossRef]
  5. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), p. 327.
  6. M. Jacobsohn, U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000). [CrossRef]
  7. S. A. Blanton, R. L. Leheny, M. A. Guyot-Sionnest, “Dielectric dispersion measurements of CdSe nanocrystal colloids: observation of a permanent dipole moment,” Phys. Rev. Lett. 79, 865–868 (1997). [CrossRef]
  8. M. P. Halsall, J. E. Nicholls, J. J. Davies, P. J. Wright, B. Cockayne, “Photoluminescence studies of CdS, CdSe wurtzite superlattices; evidence for large piezoelectric effects,” Surf. Sci. 228, 41–44 (1990). [CrossRef]
  9. S. A. Empedocles, M. G. Bawendi, “Quantum-confined Stark effect in single CdSe nanocrystallite quantum dots,” Science 278, 2114–2117 (1997). [CrossRef]
  10. V. L. Colvin, A. P. Alivisatos, “CdSe nano-crystals with a dipole moment in the first excited state,” J. Chem. Phys. 97, 730–733 (1992). [CrossRef]
  11. A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems,” Adv. Phys. 42, 173–266 (1993). [CrossRef]
  12. L. M. Zhang, F. J. Zhang, Y. Q. Wang, R. O. Claus, “Linear electro-optic tensor ratio determination and quadratic electro-optic modulation of electrostatically self-assembled CdSe quantum dot films,” J. Chem. Phys. 116, 6297–6304 (2002). [CrossRef]
  13. L. M. Zhang, F. J. Zhang, K. Cooper, Y. Q. Wang, Y. J. Liu, R. O. Claus, “Electro-optic property measurements of electrostatically self-assembled ultrathin films,” Opt. Commun. 186, 135–141 (2000). [CrossRef]
  14. F. Zhang, “Electro-optic properties of semiconductor nano-crystals and electro-optic polymers and their applications,” Ph.D. dissertation (Virginia Polytechnic Institute, 2002).
  15. L. E. Brus, “Electron–electron and electron–hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state,” J. Chem. Phys. 80, 4403–4409 (1984). [CrossRef]
  16. C. B. Murray, D. J. Norris, M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nano-crystallites,” J. Am. Chem. Soc. 115, 8706–8715 (1993). [CrossRef]
  17. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).
  18. L. E. Brus, “Quantum crystallites and nonlinear optics,” Appl. Phys. A 53, 465–474 (1991). [CrossRef]
  19. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), pp. 334–335.
  20. C. C. Teng, H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56, 1734–1736 (1990). [CrossRef]
  21. G. A. Lindsay, Polymers for Second-Order Nonlinear Optics (American Chemical Society, 1995). [CrossRef]
  22. M. A. Mortazavi, A. Knoesen, S. T. Kowel, “Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures,” J. Opt. Soc. Am. B 6, 733–741 (1989). [CrossRef]
  23. R. C. Caro, M. C. Gover, “Phase conjugation by degenerate four-wave mixing absorbing media,” IEEE J. Quantum Electron. 18, 1376–1380 (1982). [CrossRef]
  24. S. M. Amsterdam, Nonlinear Optics:Fundamentals, Materials and Devices: Proceedings of the Fifth Toyota Conference on Nonlinear Optical Materials (North-Holland, 1992), p. 421.
  25. R. G. Hunsperger, Integrated Optics Theory and Technology, 4th ed. (Springer-Verlag, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited