OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 3992–3999

Optical rotatory-dispersion-type spatial light modulator and characteristics of the modulated light

Mikio Muro and Yoshiaki Takatani  »View Author Affiliations


Applied Optics, Vol. 44, Issue 19, pp. 3992-3999 (2005)
http://dx.doi.org/10.1364/AO.44.003992


View Full Text Article

Enhanced HTML    Acrobat PDF (1112 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Among known temporal–spatial light modulation methods, there is no realistic method that can precisely control a light pulse simultaneously in the temporal and spatial domains. By careful consideration of the symmetries and topological properties of electromagnetic waves, a novel spatial light modulator has been developed to create different far-field patterns for each wavelength of linearly polarized light composed of various wavelength components. The system consists of an optical rotatory dispersion device, which is like a Faraday rotator, and a spatial light modulator with parallel-alignment nematic liquid-crystal cells. Numerical simulation results show the effectiveness of this new spatial light modulation method.

© 2005 Optical Society of America

OCIS Codes
(230.2240) Optical devices : Faraday effect
(230.3720) Optical devices : Liquid-crystal devices
(230.4110) Optical devices : Modulators
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(320.5540) Ultrafast optics : Pulse shaping

History
Original Manuscript: August 30, 2004
Revised Manuscript: January 24, 2004
Manuscript Accepted: February 4, 2005
Published: July 1, 2005

Citation
Mikio Muro and Yoshiaki Takatani, "Optical rotatory-dispersion-type spatial light modulator and characteristics of the modulated light," Appl. Opt. 44, 3992-3999 (2005)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-44-19-3992


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. M. Wefers, K. A. Nelson, “Analysis of programmable ultrashort waveform generation using liquid-crystal spatial light modulators,” J. Opt. Soc. Am. B 12, 1343–1362 (1995). [CrossRef]
  2. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140, 245–249 (1997). [CrossRef]
  3. F. Verluise, V. Laude, Z. Cheng, Ch. Spielmann, P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25, 575–577 (2000). [CrossRef]
  4. M. Kakehata, R. Ueda, H. Takada, K. Torizuka, M. Obara, “Generation of time-dependent polarization pulses by combinations of high-intensity femtosecond laser pulses,” Rev. Laser Eng. 28, 506–510 (2000). [CrossRef]
  5. T. Shirai, T. H. Barns, T. G. Haskell, “Adaptive wave-front correction by means of all-optical feedback interferometry,” Opt. Lett. 25, 773–775 (2000). [CrossRef]
  6. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, 1998), pp. 210–222.
  7. A. H. Zewail, “Laser femtochemistry,” Science 242, 1645–1653 (1988). [CrossRef] [PubMed]
  8. L. R. Khundkar, A. H. Zewail, “Ultrafast molecular reaction dynamics in real-time: progress over a decade,” Annu. Rev. Phys. Chem. 41, 15–60 (1990). [CrossRef]
  9. A. M. Weiner, “Femtosecond optical pulse shaping and processing,”Prog. Quantum Electron. 19, 161–237 (1995). [CrossRef]
  10. K. Midorikawa, Y. Nagata, S. Kubodera, M. Obara, K. Toyoda, “An optical field-induced ionization x-ray laser using a preformed plasma scheme,” IEEE J. Sel. Top. Quantum Electron. 1, 931–940 (1995). [CrossRef]
  11. A. Zhidkov, A. Sasaki, T. Utsumi, I. Fukumoto, T. Tajima, F. Sato, Y. Hironaka, K. G. Nakamura, K. Kondo, M. Yoshida, “Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids,” Phys. Rev. E 62, 7232–7240 (2000). [CrossRef]
  12. T. Tajima, J. M. Dawson, “Laser electron accelerator,” Phys. Rev. Lett. 43, 267–270 (1979). [CrossRef]
  13. C. E. Clayton, K. A. Marsh, A. Dyson, M. Everett, A. Lal, W. P. Leemans, R. Williams, C. Joshi, “Ultrahigh-gradient acceleration of injected electrons by laser-excited relativistic electron plasma waves,” Phys. Rev. Lett. 70, 37–40 (1993). [CrossRef] [PubMed]
  14. T. Tajima, “High energy laser plasma accelerators,” Laser Part. Beams 3, 351–413 (1985). [CrossRef]
  15. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida, “Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry,” Rapid Commun. Mass Spectrom. 2, 151–153 (1988). [CrossRef]
  16. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  17. M. Dyba, T. A. Klar, S. Jakobs, S. W. Hell, “Ultrafast dynamics microscopy,” Appl. Phys. Lett. 77, 597–599 (2000). [CrossRef]
  18. A. G. White, C. P. Smith, N. R. Heckenberg, H. Rubinsztein-Dunlop, R. Mcduff, C. O. Weiss, Chr. Tamm, “Interferometric measurements of phase singularities in the output of a visible laser,” J. Mod. Opt. 38, 2531–2541 (1991). [CrossRef]
  19. N. R. Heckenberg, R. Mcduff, C. P. Smith, H. Rubinsztein-Dunlop, M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951–S962 (1992). [CrossRef]
  20. H. He, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Optical particle trapping with high-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217–223 (1995). [CrossRef]
  21. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27, 1351–1353 (2002). [CrossRef]
  22. P. A. M. Dirac, “Quantised singularities in the electromagnetic field,”Proc. R. Soc. London Ser. A 133, 60–72 (1931). [CrossRef]
  23. P. A. M. Dirac, “The theory of magnetic poles,” Phys. Rev. 74, 817–830 (1948). [CrossRef]
  24. H. He, M. E. J. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef] [PubMed]
  25. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996). [CrossRef] [PubMed]
  26. N. B. Simpson, L. Allen, M. J. Padgett, “Optical tweezers and optical spanners with Laguerre–Gaussian modes,” J. Mod. Opt. 43, 2485–2491 (1996). [CrossRef]
  27. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78, 4713–4716 (1997). [CrossRef]
  28. K. T. Gahagan, G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef] [PubMed]
  29. G. A. Swartzlander, “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497–499 (2001). [CrossRef]
  30. J. A. Davis, D. E. McNamara, D. M. Cottrell, T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000). [CrossRef]
  31. I. Freund, “Polarization singularity indices in Gaussian laser beams,” Opt. Commun. 201, 251–270 (2002). [CrossRef]
  32. S. Kahl, S. I. Khartsev, A. M. Grishin, K. Kawano, G. Kong, R. A. Chkalov, J. S. Abell, “Structure, microstructure, and magneto-optical properties of laser deposited Bi3Fe5O12/ Gd3Ga5O12(111) films,” J. Appl. Phys. 91, 9556–9560 (2002). [CrossRef]
  33. P. Yeh, C. Gu, Optics of Liquid Crystal Displays (Wiley Interscience, 1999), pp. 5–10.
  34. M. Born, E. Wolf, Principles of Optics (Pergamon, 1975).
  35. J. A. Davis, P. Tsai, D. M. Cottrell, T. Sonehara, J. Amako, “Transmission variations in liquid crystal spatial light modulators caused by interference and diffraction effects,” Opt. Eng. 38, 1051–1057 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited