OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 44, Iss. 19 — Jul. 1, 2005
  • pp: 4004–4008

High-sensitivity and specificity of laser-induced autofluorescence spectra for detection of colorectal cancer with an artificial neural network

L. C. Kwek, Sheng Fu, T. C. Chia, C. H. Diong, C. L. Tang, and S. M. Krishnan  »View Author Affiliations

Applied Optics, Vol. 44, Issue 19, pp. 4004-4008 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (108 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An artificial neural network (ANN) has been used in various clinical research for the prediction and classification of data in cancer disease. Previous research in this direction focused on the correlation between various input parameters such as age, antigen, and size of tumor growth. Recently, laser-induced autofluorescence (LIAF) techniques have been shown to be a useful noninvasive early diagnostic tool for various cancer diseases. We report on a successful application of ANN to in vitro LIAF spectra. We show that classification of tumor samples with ANN can be done with high sensitivity, specificity, and accuracy. Thus a combination of LIAF techniques and ANN can provide a robust method for clinical diagnosis.

© 2005 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(300.0300) Spectroscopy : Spectroscopy

Original Manuscript: April 19, 2004
Revised Manuscript: November 8, 2004
Manuscript Accepted: December 20, 2004
Published: July 1, 2005

L. C. Kwek, Sheng Fu, T. C. Chia, C. H. Diong, C. L. Tang, and S. M. Krishnan, "High-sensitivity and specificity of laser-induced autofluorescence spectra for detection of colorectal cancer with an artificial neural network," Appl. Opt. 44, 4004-4008 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For the latest U.S. statistics, see http://seer.cancer.gov ; for Canadian statistics, see http://www.cancer.ca ; for Australian statistics, see http://www.nswcc.org.au/ . For statistics on China and Japan, see World Health Statistics Annual (World Health Organization, 1996).
  2. W.-B. Du, K.-S. Chia, R. Sankaramarayanan, R. Sankila, A. Seow, H. P. Lee, “Population-based survival analysis of colorectal cancer patients in Singapore, 1968-1992,” Int. J. Cancer 99, 460–465 (2002). [CrossRef] [PubMed]
  3. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000). [CrossRef] [PubMed]
  4. G. Zonios, L. T. Perelman, V. Backman, R. Manharan, M. Fitzmaurice, J. Van Dam, M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyp in vivo,” Appl. Opt. 38, 6628–6637 (1999). [CrossRef]
  5. J. R. Mourant, I. J. Bigio, J. Boyer, T. M. Johnson, J. Lacey, “Elastic scattering spectroscopy as a diagnostic for differentiating pathologies in the gastrointestinal tract: preliminary testing,” J. Biomed. Opt. 1, 192–199 (1996). [CrossRef] [PubMed]
  6. Z. Ge, K. T. Schomacker, N. S. Nishioka, “Identification of colonic dysplasia by diffuse spectroscopy and pattern recognition techniques,” Appl. Spectrosc. 52, 833–839 (1998). [CrossRef]
  7. E. Sevick-Muraca, R. Richards-Kortum, “Quantitative optical spectroscopy for tissue diagnosis,” Am. Rev. Phys. Chem. 47, 555–606 (1996). [CrossRef]
  8. G. A. Wagnieres, W. M. Star, B. C. Wilson, “In vivo fluorescence spectroscopy and imaging for oncological applications,” Photochem. Photobiol. 68, 603–632 (1998). [CrossRef] [PubMed]
  9. H. Stepp, R. Sroka, R. Baumgartner, “Fluorescence endoscopy of gastrointestinal diseases: basic principles, techniques and clinical experiences,” Endoscopy 30, 379–386 (1998). [CrossRef] [PubMed]
  10. N. Ramanujam, M. Follen-Mitchell, A. Mahadevan-Jansen, S. Thomsen, G. Staerkel, A. Malpica, T. Wright, N. Atkinson, R. Richards-Kortum, “Cervical precancer detection using multivariate statistical algorithm based on laser fluorescence spectra at multiple excitation wavelengths,” Photochem. Photobiol. 64, 720–735 (1996). [CrossRef] [PubMed]
  11. K. Schomacker, J. Frisoli, J. Compton, T. Flotte, J. Richter, N. Nishioka, T. Deutsch, “Ultraviolet laser induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med. 12, 63–78 (1992). [CrossRef]
  12. T. D. Wang, J. M. Crawford, M. Feld, Y. Wang, I. Itzkan, J. Van Dam, “In vivo identification of colonic dysplasia using fluorescence endoscopic imaging,” Gastrointest. Endosc. 49, 447–455 (1999). [CrossRef] [PubMed]
  13. M. A. Mycek, K. T. Schomacker, N. S. Nishioka, “Colonic polyp differentiation using time resolved autofluorescence spectroscopy,” Gastrointest. Endosc. 48, 390–394 (1998). [CrossRef] [PubMed]
  14. S. Fu, T. C. Chia, C. H. Diong, C. L. Tang, F. Seow Choen, “Changes in in-vivo autofluorescence spectra at different periods in rat colorectal tumor progression,” in Diagnostic Optical Spectroscopy in Biomedicine, T. G. Papazoglou, G. A. Wagnieres, eds., Proc. SPIE4432, 118–123 (2001). [CrossRef]
  15. S. Fu, T. C. Chia, C. L. Tang, C. H. Diong, L. C. Kwek, F. Seow Choen, S. M. Krishnan, “Studies of laser induced autofluorescence intensity ratio in human colorectal cancer diagnosis,” Asian J. Phys. (to be published).
  16. R. S. DaCosta, B. C. Wilson, N. E. Marcon, “Recent advances in light induced fluorescence endoscopy in the GI tract (invited review),” Dig. Endosc. 11, 108–118 (1999). [CrossRef]
  17. H. Zeng, A. Weiss, R. Cline, C. MacAulay, “Real-time endoscopic fluorescence imaging for early cancer detection in the gastrointestinal tract,” Bioimaging 6, 151–165 (1998). [CrossRef]
  18. H. A. Abbass, “An evolutionary artificial neural networks approach for breast cancer diagnosis,” Artif. Intell. Med. 25, 265–281 (2002). [CrossRef] [PubMed]
  19. E. Bganzoli, P. Boracchi, D. Coradini, M. Garzia Daidone, E. Marubini, “Prognosis in node-negative primary breast cancer: a neural network analysis of risk profiles using routinely assessed factors,” Ann. Oncol. 14, 1484–1493 (2003). [CrossRef]
  20. C. Mello-Thoms, S. M. Dunn, C. F. Nodine, H. L. Kundel, “The perception of breast cancers—a spatial frequency analysis of what differentiates missed from reported cancers,” IEEE Trans. Med. Imaging 22, 1297–1306 (2003). [CrossRef] [PubMed]
  21. S. Argov, J. Ramesh, A. Salman, I. Sinelnikov, J. Goldstein, H. Guterman, S. Mordechai, “Diagnostic potential of Fourier-transform infrared microspectroscopy and advanced computational methods in colon cancer patients,” J. Biomed. Opt. 7, 248–254 (2002). [CrossRef] [PubMed]
  22. C. Stephan, H. Cammann, A. Semjonow, E. P. Diamandis, L. F. A. Wymenga, M. Lein, P. Sinha, S. A. Loening, K. Jung, “Multicenter evaluation of an artificial Neural Network to increase the prostate cancer detection rate and reduce unnecessary biopsies,” Clin. Chem. 48, 1279–1287 (2002). [PubMed]
  23. B. Djavan, M. Remzi, A. Zlotta, C. Seitz, P. Snow, M. Marberger, “Novel artificial neural network for early detection of prostate cancer,” J. Clin. Oncol. 20, 921–929 (2002). [CrossRef] [PubMed]
  24. P. Kalra, J. Togam, G. Bansal, A. W. Partin, M. K. Brawer, R. J. Bahaian, L. S. Ross, C. S. Niederberger, “A neurocomputational model for prostate carcinoma detection,” Cancer 98, 1849–1854 (2003). [CrossRef] [PubMed]
  25. C. Stephen, K. Jung, H. Cammann, B. Vogel, B. Brux, G. Kristiansen, B. Rudolph, S. Hauptmann, M. Lein, D. Schnorr, P. Sinia, S. A. Loening, “An artificial neural network considerably improves the diagnostic power of percent free prostate-specific antigen in prostate cancer diagnosis,” Int. J. Cancer 99, 466–473 (2002). [CrossRef]
  26. R. Dua, D. G. Beetner, W. V. Stoecker, D. C. Wunsch, “Detection of basal cell carcinoma using electrical impedance and neural network,” IEEE Trans. Biomed. Eng. 51, 66–71 (2004). [CrossRef] [PubMed]
  27. R. R. Alfano, D. B. Tata, P. Tomashefsky, F. W. Longo, M. A. Alfano, “Laser induced fluorescence spectroscopy from native cancerous and normal tissue,” IEEE Quantum Electron. 20, 1507–1511 (1984). [CrossRef]
  28. P. N. Yakshe, R. F. Bonner, R. Patterson, M. B. Leon, D. E. Fleischer, “Laser induced fluorescence spectroscopy (LIFS): can it be used in the diagnosis and treatment of colonic malignancy?,” Am. J. Gastroenterol. 84, 1199 (1989).
  29. P. N. Yakshe, R. F. Bonner, P. Cohen, M. B. Leon, D. E. Fleischer, “Laser-induced fluorescence spectroscopy may distinguish colon cancer from normal mucosa,” Gastrointest. Endosc. 35, 184 (1989).
  30. T. L. H. Watkin, A. Rau, M. Biehl, “The statistical mechanics of learning a rule,” Rev. Mod. Phys. 65, 488–556 (1983).
  31. W. S. McCulloch, W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bull. Math. Biophys. 5, 115–133 (1943). [CrossRef]
  32. V. P. Wallace, J. C. Bamber, D. C. Crawford, R. J. Ott, P. S. Mortimer, “Classification of reflectance spectra from pigmented skin lesions, a comparison of multivariate discriminant analysis and artificial neural network,” Phys. Med. Biol. 45, 2859–2871 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited